题目内容
14.若{an}是等差数列,首项a1>0,a2014+a2015>0,a2014•a2015<0,则使前n项和Sn<0成立的最小正整数n是( )| A. | 2015 | B. | 2014 | C. | 4029 | D. | 4028 |
分析 由已知可得:a2014>0,a2015<0,可得S4029=4029×a2015<0,即可得出.
解答 解:∵首项a1>0,a2014+a2015>0,a2014•a2015<0,
∴a2014>0,a2015<0,
∴S4029=$\frac{4029({a}_{1}+{a}_{4029})}{2}$=4029×a2015<0,
则使前n项和Sn<0成立的最小正整数n是4029.
故选:C.
点评 本题考查了等差数列的通项公式及其前n项和公式、不等式的性质,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
5.若二项式x(2x-$\frac{a}{x}$)7的展开式中$\frac{1}{{x}^{2}}$的系数是84,则实数a=( )
| A. | 2 | B. | -$\root{5}{4}$ | C. | -1 | D. | $\frac{\sqrt{2}}{4}$ |
2.曲线y=$\frac{1}{x}$(x>0)在点P(x0,y0)处的切线为l.若直线l与x,y轴的交点分别为A,B,则△OAB(其中O为坐标原点)的面积为( )
| A. | 4+2$\sqrt{2}$ | B. | 2$\sqrt{2}$ | C. | 2 | D. | 5+2$\sqrt{7}$ |
19.过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左焦点F1作圆x2+y2=a2的切线,并延长交双曲线右支于点P,过右焦点F2作圆的切线交F1P于M,且M为F1P的中点,则双曲线的离心率e∈( )
| A. | (1,$\sqrt{2}$) | B. | ($\sqrt{2}$,$\sqrt{3}$) | C. | ($\sqrt{3},2$) | D. | (2,$\sqrt{5}$) |
6.已知动点P(x,y)在双曲线x2-$\frac{{y}^{2}}{4}$=1的渐近线向左平移一个单位所得直线和x-y+3=0围成的区域内(含边界),则z=$\frac{x+2y-4}{x-2}$的范围为( )
| A. | [$\frac{9}{11}$,$\frac{5}{3}$] | B. | [-5,$\frac{5}{3}$] | C. | [-5,$\frac{9}{11}$] | D. | [-3,$\frac{1}{3}$] |
3.平面向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为30°,$\overrightarrow{a}$=(1,0),|$\overrightarrow{b}$|=$\sqrt{3}$,则|$\overrightarrow{a}$-$\overrightarrow{b}$|=( )
| A. | 2$\sqrt{3}$ | B. | 1 | C. | $\sqrt{5}$ | D. | $\frac{\sqrt{2}}{2}$ |
4.如果f(x)是定义在R上的奇函数,那么下列函数中,一定为偶函数的是( )
| A. | y=x+f(x) | B. | y=xf(x) | C. | y=x2+f(x) | D. | y=x2f(x) |