题目内容
8.在圆x2+y2-2x-6y=15内,过点E(0,1)的最长弦和最短弦分别是AC和BD,则|AC|•|BD|的值为( )| A. | $80\sqrt{5}$ | B. | $60\sqrt{5}$ | C. | $40\sqrt{5}$ | D. | $20\sqrt{5}$ |
分析 把圆的方程化为标准方程后,找出圆心坐标与圆的半径,根据图形可知,过点E最长的弦为直径AC,最短的弦为过E与直径AC垂直的弦BD,根据两点间的距离公式求出ME的长度,根据垂径定理得到E为BD的中点,在直角三角形BME中,根据勾股定理求出BE,则BD=2BE,即可求出AC与BD的乘积.
解答
解:把圆的方程化为标准方程得:(x-1)2+(y-3)2=25,
则圆心坐标为(1,3),半径为5,
根据题意画出图象,如图所示:
由图象可知:过点E最长的弦为直径AC,最短的弦为过E与直径AC垂直的弦,则AC=10,MB=5,ME=$\sqrt{5}$,
所以BD=2BE=2$\sqrt{25-5}$=4$\sqrt{5}$,
所以|AC|•|BD|=10•4$\sqrt{5}$=40$\sqrt{5}$.
故选:C.
点评 此题考查学生掌握垂径定理及勾股定理的应用,灵活运用两点间的距离公式化简求值,是一道中档题.
练习册系列答案
相关题目
16.
已知点P在以F1,F2为焦点的双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)上,过P作y轴的垂线,垂足为Q,若四边形F1F2PQ为菱形,则该双曲线的离心率为( )
| A. | $\frac{1+\sqrt{2}}{2}$ | B. | $\frac{1+\sqrt{3}}{2}$ | C. | 1$+\sqrt{2}$ | D. | 1+$\sqrt{3}$ |
20.
四棱锥P-ABCD的底面是一个正方形,PA⊥平面ABCD,PA=AB=2,E是棱PA的中点,则异面直线BE与AC所成角的余弦值是( )
| A. | $\frac{{\sqrt{15}}}{5}$ | B. | $\frac{{\sqrt{10}}}{5}$ | C. | $\frac{{\sqrt{6}}}{3}$ | D. | $\frac{{\sqrt{6}}}{2}$ |
18.设奇函数f(x)在(0,+∞)上为增函数,且$f({\sqrt{3}})=0$,则不等式x[f(x)-f(-x)]<0的解集为( )
| A. | $({-\sqrt{3},0})∪({\sqrt{3},+∞})$ | B. | $({-\sqrt{3},0})∪({0,\sqrt{3}})$ | C. | $({-∞,-\sqrt{3}})∪({0,\sqrt{3}})$ | D. | $({-∞,-\sqrt{3}})∪({\sqrt{3},+∞})$ |