题目内容

8.在圆x2+y2-2x-6y=15内,过点E(0,1)的最长弦和最短弦分别是AC和BD,则|AC|•|BD|的值为(  )
A.$80\sqrt{5}$B.$60\sqrt{5}$C.$40\sqrt{5}$D.$20\sqrt{5}$

分析 把圆的方程化为标准方程后,找出圆心坐标与圆的半径,根据图形可知,过点E最长的弦为直径AC,最短的弦为过E与直径AC垂直的弦BD,根据两点间的距离公式求出ME的长度,根据垂径定理得到E为BD的中点,在直角三角形BME中,根据勾股定理求出BE,则BD=2BE,即可求出AC与BD的乘积.

解答 解:把圆的方程化为标准方程得:(x-1)2+(y-3)2=25,
则圆心坐标为(1,3),半径为5,
根据题意画出图象,如图所示:
由图象可知:过点E最长的弦为直径AC,最短的弦为过E与直径AC垂直的弦,则AC=10,MB=5,ME=$\sqrt{5}$,
所以BD=2BE=2$\sqrt{25-5}$=4$\sqrt{5}$,
所以|AC|•|BD|=10•4$\sqrt{5}$=40$\sqrt{5}$.
故选:C.

点评 此题考查学生掌握垂径定理及勾股定理的应用,灵活运用两点间的距离公式化简求值,是一道中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网