题目内容

过定点A(ab)任作互相垂直的两直线l1l2,且l1x轴相交于M点,l2y轴相交于N点,求线段MN中点P的轨迹方程.

解法一:设M(x1,0),N(0,y1),P(xy).

P点为线段MN的中点,

                                                                                                    ①

又∵l1l2,∴|AM|2+|AN|2=|MN|2,

即(x1a)2+(0-b)2+(y1b)2+(0-a)2=(x1-0)2+(y1-0)2,

即(x1a)2a2+(y1b)2b2x12y12.                                                                     ②

把①代入②化简得2ax+2bya2b2=0,即为P点的轨迹方程.

解法二:设P(xy).

①当AMx轴不垂直时,∵PMN中点,∴M(2x,0),N(0,2y).

kAMkBNl1l2,∴·=-1.

化简得2ax+2bya2b2=0.                                                                                    ①

②当AMx轴时,AM的斜率不存在,此时MN中点坐标()满足方程①.

综上所述,得P点的轨迹方程为2ax+2bya2b2=0.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网