题目内容

16.当k为何值时,x2-(k+1)x+2k-1=0的根
(1)都在(1,4)内;
(2)一个大于4,另一个小于4;
(3)都小于2?

分析 令f(x)=x2-(k+1)x+2k-1,
(1)若x2-(k+1)x+2k-1=0的根都在(1,4)内;则$\left\{\begin{array}{l}△=(k+1)^{2}-4(2k-1)≥0\\ 1<\frac{k+1}{2}<4\\ f(1)=k-1>0\\ f(4)=11-2k>0\end{array}\right.$解得k的取值范围;
(2)若x2-(k+1)x+2k-1=0的根一个大于4,另一个小于4;则$\begin{array}{c}f(4)=11-2k<0\end{array}\right.$,解得k的取值范围;
(3)若x2-(k+1)x+2k-1=0的根都小于2,则$\left\{\begin{array}{l}△={(k+1)}^{2}-4(2k-1)≥0\\ \frac{k+1}{2}<2\end{array}\right.$,解得k的取值范围.

解答 解:令f(x)=x2-(k+1)x+2k-1,
(1)若x2-(k+1)x+2k-1=0的根都在(1,4)内;
则$\left\{\begin{array}{l}△=(k+1)^{2}-4(2k-1)≥0\\ 1<\frac{k+1}{2}<4\\ f(1)=k-1>0\\ f(4)=11-2k>0\end{array}\right.$
解得:k∈[5,$\frac{11}{2}$)
(2)若x2-(k+1)x+2k-1=0的根一个大于4,另一个小于4;
则$\begin{array}{c}f(4)=11-2k<0\end{array}\right.$,
解得:k∈($\frac{11}{2}$,+∞)
(3)若x2-(k+1)x+2k-1=0的根都小于2,
则$\left\{\begin{array}{l}△={(k+1)}^{2}-4(2k-1)≥0\\ \frac{k+1}{2}<2\end{array}\right.$,
解得:k∈(-∞,1]

点评 本题考查的知识点是二次函数的图象和性质,函数的零点与方程根的关系,难度中档.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网