题目内容
已知α为锐角,且tanα=
-1,函数f(x)=2xtan2α+sin(2α+
),数列{an}的首项a1=1,an+1=f(an).
(1)求函数f(x)的表达式;
(2)在△ABC中,若∠A=2α,∠C=
,BC=2,求△ABC的面积
(3)求数列{an}的前n项和Sn.
| 2 |
| π |
| 4 |
(1)求函数f(x)的表达式;
(2)在△ABC中,若∠A=2α,∠C=
| π |
| 3 |
(3)求数列{an}的前n项和Sn.
(1)tan2α=
=
=1
∴sin(2α+
)=sin2α•cos
+cos2α•sin
=
(sin2α+cos2α)
=
×
(分子分母同除以cos2α)
=
×
=1
∴f(x)=2x+1
(2)由(1)得∠A=2α=
,而∠C=
,
根据正弦定理易AB=
=
=
,
sinB=sin[π-(A+C)]=sin75°=
S△ABC=
×AB×BC×sinB=
×
×2×
=
(3)∵an+1=2an+1,
∴an+1+1=2(an+1)
∵a1=1∴数列{an+1}是以2为首项,2为公比的等比数列.
可得an+1=2n,∴an=2n-1,
∴Sn=
-n=2n+1-n-2
| 2tanα |
| 1-tan2α |
2(
| ||
1-(
|
∴sin(2α+
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| ||
| 2 |
=
| ||
| 2 |
| 2sinα•cosα+(cos2α-sin2α ) |
| sin2α+cos2α |
=
| ||
| 2 |
| 2tanα+(1-tan2α) |
| 1+tan2α |
∴f(x)=2x+1
(2)由(1)得∠A=2α=
| π |
| 4 |
| π |
| 3 |
根据正弦定理易AB=
BC•sin
| ||
sin
|
2×
| ||||
|
| 6 |
sinB=sin[π-(A+C)]=sin75°=
| ||||
| 4 |
S△ABC=
| 1 |
| 2 |
| 1 |
| 2 |
| 6 |
| ||||
| 4 |
3+
| ||
| 2 |
(3)∵an+1=2an+1,
∴an+1+1=2(an+1)
∵a1=1∴数列{an+1}是以2为首项,2为公比的等比数列.
可得an+1=2n,∴an=2n-1,
∴Sn=
| 2(1-2n) |
| 1-2 |
练习册系列答案
相关题目