题目内容

观察下列问题:
已知(1-2x)2014=a0+a1x+a2x2+a3x3+…+a2014x2014,令x=1,可得a0+a1+a2+…+a2014=(1-2×1)2014=1,令x=-1,可得a0-a1+a2-a3+…+a2014=(1+2×1)2014=32014请仿照这种“赋值法”,令x=0,得到a0=
 
,并求出
a1
2
+
a2
22
+
a3
23
+…+
a2014
22014
=
 
考点:二项式定理的应用,数列的求和,二项式系数的性质
专题:计算题,二项式定理
分析:令x=0,x=
1
2
,即可得出结论.
解答: 解:令x=0,得到a0=12014=1;
令x=
1
2
,得到0=a0+
a1
2
+
a2
22
+
a3
23
+…+
a2014
22014
,∴
a1
2
+
a2
22
+
a3
23
+…+
a2014
22014
=-1.
故答案为:1、-1.
点评:本题主要考查二项式定理的应用,注意根据题意,分析所给代数式的特点,通过给二项式的x赋值,求展开式的系数和,可以简便的求出答案,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网