题目内容
14.若直线Ax+By+C=0左上方的点(x0,y0)满足Ax0+By0+C>0,则A•B的符号为负.分析 判断出斜率的正负,从而求出AB的符号即可.
解答 解:首先,只有斜率为正的直线才谈得上左上方和右下方(斜率为负的直线则有左下方和右上方),
斜率为-$\frac{A}{B}$,所以A,B异号,
故答案为:负.
点评 本题考查二无一次不等式的几何意义,解题时要注意特殊值法的合理运用.
练习册系列答案
相关题目
2.设x,y∈[$\frac{1}{3}$,1],则y+$\frac{x}{\sqrt{4{x}^{2}({y}^{2}+1)-4x+1}}$的最大值为( )
| A. | $\frac{1}{2}$ | B. | 1 | C. | $\frac{3}{2}$ | D. | $\frac{11}{6}$ |
9.
某市组织高一全体学生参加计算机操作比赛,等级分为1至10分,随机调阅了A、B两所学校各60名学生的成绩,得到样本数据如表:
B校样本数据统计表
(Ⅰ)计算两校样本数据的均值和方差,并根据所得数据进行比较.
(Ⅱ) 记事件C为“A校学生计算机优秀成绩高于B校学生计算机优秀成绩”.假设7分或7分以上为优秀成绩,两校学生计算机成绩相互独立.根据所给样本数据,以事件发生的频率作为相应事件发生的概率,求C的概率.
B校样本数据统计表
| 成绩(分) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| 人数(个) | 0 | 0 | 0 | 9 | 12 | 21 | 9 | 6 | 3 | 0 |
(Ⅱ) 记事件C为“A校学生计算机优秀成绩高于B校学生计算机优秀成绩”.假设7分或7分以上为优秀成绩,两校学生计算机成绩相互独立.根据所给样本数据,以事件发生的频率作为相应事件发生的概率,求C的概率.