题目内容
2.若函数f(x)=cos(2x+θ)(0<θ<π)的图象关于(π,0)对称,则函数f(x)在[-$\frac{π}{4}$,$\frac{π}{6}$]上的最小值是( )| A. | -$\sqrt{3}$ | B. | -1 | C. | -$\frac{1}{2}$ | D. | -$\frac{\sqrt{3}}{2}$ |
分析 利用余弦函数的图象对称性,诱导公式,求得f(x)的解析式,再利用正弦函数的定义域和值域,求得函数f(x)在[-$\frac{π}{4}$,$\frac{π}{6}$]上的最小值.
解答 解:∵函数f(x)=cos(2x+θ)(0<θ<π)的图象关于(π,0)对称,故有f(π)=cos(2π+θ)=0,故有θ=kπ+$\frac{π}{2}$,k∈Z,
∴θ=$\frac{π}{2}$,f(x)=-sin2x.
在[-$\frac{π}{4}$,$\frac{π}{6}$]上,2x∈[-$\frac{π}{2}$,$\frac{π}{3}$],故当2x=-$\frac{π}{2}$时,f(x)取得最小值是-1,
故选:B.
点评 本题主要考查余弦函数的图象对称性,诱导公式,正弦函数的定义域和值域,属于基础题.
练习册系列答案
相关题目
12.函数f(x)在定义域R内可导,若任意的x∈R,都有f(x)=f(2-x),且当x≠1时,有(x-1)f'(x)>0,设a=f(lne),b=f(ln2),$c=f(ln\frac{1}{e})$,则a、b、c的大小关系为( )
| A. | a<b<c | B. | c<a<b | C. | c<b<a | D. | b<c<a |
11.
在正方体ABCD-A1B1C1D1中,O为正方形ABCD的中心,则D1O与平面ABCD所成的角的余弦值为( )
| A. | $\frac{\sqrt{5}}{5}$ | B. | $\frac{{\sqrt{3}}}{3}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\frac{\sqrt{6}}{6}$ |