题目内容
16.已知双曲线${x^2}-\frac{y^2}{3}=1$的左,右焦点分别为F1,F2,双曲线的离心率为e,若双曲线上一点P使$\frac{{sin∠P{F_2}{F_1}}}{{sin∠P{F_1}{F_2}}}=e$,则$\overrightarrow{{F_2}P}•\overrightarrow{{F_2}{F_1}}$的值为( )| A. | 3 | B. | 2 | C. | -3 | D. | -2 |
分析 求出双曲线的a,b,c,e,运用三角形的正弦定理和双曲线的定义,求得|PF1|=4,|PF2|=2.再由余弦定理求得cos∠PF2F1,运用向量数量积的定义计算即可得到所求值.
解答 解:双曲线${x^2}-\frac{y^2}{3}=1$的a=1,b=$\sqrt{3}$,c=$\sqrt{1+3}$=2,
可得$\frac{{sin∠P{F_2}{F_1}}}{{sin∠P{F_1}{F_2}}}=e$=$\frac{c}{a}$=2,
F1(-2,0),F2(2,0),P为右支上一点,
由正弦定理可得|PF1|=2|PF2|,
由双曲线的定义可得|PF1|-|PF2|=2a=2,
解得|PF1|=4,|PF2|=2.
在△PF2F1中,由余弦定理得cos∠PF2F1=$\frac{{2}^{2}+{4}^{2}-{4}^{2}}{2×2×4}$=$\frac{1}{4}$,
则$\overrightarrow{{F_2}P}•\overrightarrow{{F_2}{F_1}}$=|$\overrightarrow{{F}_{2}P}$|•|$\overrightarrow{{F}_{2}{F}_{1}}$|•cos∠PF2F1=2×4×$\frac{1}{4}$=2.
故选:B.
点评 本题考查双曲线的方程和性质,主要是焦点和离心率,注意运用双曲线的定义和三角形的正弦和余弦定理,以及向量数量积的定义的应用,考查运算能力,属于中档题.
练习册系列答案
相关题目
1.已知一个平放的各棱长均为 4 的三棱锥内有一个小球,现从该三棱锥顶端向锥内注水,小球慢慢上浮.当注入的水的体积是该三棱锥体积的$\frac{7}{8}$时,小球恰与该三棱锥各侧面及水面相切(小球完全浮在水面上方),则小球的表面积等于( )
| A. | $\frac{7π}{6}$ | B. | $\frac{4π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{π}{2}$ |