ÌâÄ¿ÄÚÈÝ
ÉèµãAn£¨xn£¬0£©£¬Pn£¨xn£¬2n-1£©ºÍÅ×ÎïÏßCn£ºy=x2+anx+bn£¨n¡ÊN*£©£¬ÆäÖÐan=-2-4n-| 1 | 2n-1 |
£¨¢ñ£©Çóx2¼°C1µÄ·½³Ì£®
£¨¢ò£©Ö¤Ã÷{xn}ÊǵȲîÊýÁУ®
·ÖÎö£º±¾Ì⿼²éÊýÁÐÓë½âÎö¼¸ºÎµÄ×ÛºÏÎÊÌâ£¬Éæ¼°ÁËÅ×ÎïÏß·½³Ì¡¢Ö±ÏßÓëÅ×ÎïÏߵĹØÏµ¡¢µ¼Êý¼°Æä¼¸ºÎÒâÒå¡¢ÇóÇúÏß·½³Ì¡¢Ö¤Ã÷µÈ²îÊýÁС¢Êýѧ¹éÄÉ·¨µÈ¶à·½ÃæµÄ֪ʶºÍ·½·¨£®
¶ÔÓÚ£¨¢ñ£©µÄÇó½â£¬Òª³ä·ÖÀûÓõãÔÚÅ×ÎïÏßÉÏÔòÂú×ãÅ×ÎïÏß·½³Ì£¬½áºÏÁ½µã¼äµÄ¾àÀ빫ʽÓõãp£¨x£¬y£©±íʾ|A1P|£¬È»ºó½èÖúÓÚµ¼Êý£¬ÀûÓÃf'£¨x2£©=0½¨Á¢·½³Ì£¬×îÖÕʹÎÊÌâµÃµ½½â¾ö£®
¶ÔÓÚ£¨¢ò£©Àà±È£¨¢ñ£©£¬Ê×ÏÈÀûÓõãP£¨x£¬y£©ÊÇCnÉÏÈÎÒâÒ»µã£¬µÃµ½|AnP|=
=
£¬È»ºóÀûÓõ¼Êý˼Ïë»ñµÃxn+1-xn£©+2£¨xn+12+anx+bn£©£¨2xn+1+an£©=0²¢ÓÉ´Ëͨ¹ýÊýѧ¹éÄÉ·¨Ö¤Ã÷³öxn=2n-1£¬Ò²¼´Ö¤Ã÷ÁË{xn}ÊǵȲîÊýÁУ®
¶ÔÓÚ£¨¢ñ£©µÄÇó½â£¬Òª³ä·ÖÀûÓõãÔÚÅ×ÎïÏßÉÏÔòÂú×ãÅ×ÎïÏß·½³Ì£¬½áºÏÁ½µã¼äµÄ¾àÀ빫ʽÓõãp£¨x£¬y£©±íʾ|A1P|£¬È»ºó½èÖúÓÚµ¼Êý£¬ÀûÓÃf'£¨x2£©=0½¨Á¢·½³Ì£¬×îÖÕʹÎÊÌâµÃµ½½â¾ö£®
¶ÔÓÚ£¨¢ò£©Àà±È£¨¢ñ£©£¬Ê×ÏÈÀûÓõãP£¨x£¬y£©ÊÇCnÉÏÈÎÒâÒ»µã£¬µÃµ½|AnP|=
| (x-xn)2+y2 |
| (x-xn)2+(x2+anx+bn)2 |
½â´ð£º½â£º£¨¢ñ£©ÓÉÌâÒâµÃA1£¨1£¬0£©£¬C1£ºy=x2-7x+b1£¬
ÉèµãP£¨x£¬y£©ÊÇC1ÉÏÈÎÒâÒ»µã£¬
Ôò|A1P|=
=
Áîf£¨x£©=£¨x-1£©2+£¨x2-7x+b1£©2
Ôòf'£¨x£©=2£¨x-1£©+2£¨x2-7x+b1£©£¨2x-7£©
ÓÉÌâÒâµÃf'£¨x2£©=0£¬
¼´2£¨x2-1£©+2£¨x22-7x+b1£©£¨2x2-7£©=0
ÓÖP2£¨x2£¬2£©ÔÚC1ÉÏ£¬¡à2=x22-7x2+b1
½âµÃx2=3£¬b1=14
¹ÊC1µÄ·½³ÌΪy=x2-7x+14
£¨¢ò£©ÉèµãP£¨x£¬y£©ÊÇCnÉÏÈÎÒâÒ»µã£¬
Ôò|AnP|=
=
Áîg£¨x£©=£¨x-xn£©2+£¨x2+anx+bn£©2
Ôòg'£¨x£©=2£¨x-xn£©+2£¨x2+anx+bn£©£¨2x+an£©
ÓÉÌâÒâµÃg'£¨xn+1£©=0
¼´2£¨xn+1-xn£©+2£¨xn+12+anx+bn£©£¨2xn+1+an£©=0
ÓÖ¡ß2n=xn+1£¬¡à£¨xn+1-xn£©+2n£¨2xn+1+an£©=0£¨n¡Ý1£©£¬
¼´£¨1+2n+1£©xn+1-xn+2nan=0??£¨*£©
ÏÂÃæÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷xn=2n-1£¬
¢Ùµ±n=1ʱ£¬x1=1£¬µÈʽ³ÉÁ¢£»
¢Ú¼ÙÉèµ±n=kʱ£¬µÈʽ³ÉÁ¢£¬¼´xk=2k-1£¬
Ôòµ±n=k+1ʱ£¬ÓÉ£¨*£©Öª£¨1+2k+1£©xk+1-xk+2kak=0£¬
ÓÖak=2-4k-
£¬¡àxk+1=
=2k+1£¬
¼´n=k+1ʱ£¬µÈʽ³ÉÁ¢£®
ÓÉ¢Ù¢ÚÖª£¬µÈʽ¶Ôn¡ÊN*³ÉÁ¢£¬
¹Ê{xn}ÊǵȲîÊýÁУ®
ÉèµãP£¨x£¬y£©ÊÇC1ÉÏÈÎÒâÒ»µã£¬
Ôò|A1P|=
| (x-1)2+y2 |
| (x-1)2+(x2-7x+b1)2 |
Áîf£¨x£©=£¨x-1£©2+£¨x2-7x+b1£©2
Ôòf'£¨x£©=2£¨x-1£©+2£¨x2-7x+b1£©£¨2x-7£©
ÓÉÌâÒâµÃf'£¨x2£©=0£¬
¼´2£¨x2-1£©+2£¨x22-7x+b1£©£¨2x2-7£©=0
ÓÖP2£¨x2£¬2£©ÔÚC1ÉÏ£¬¡à2=x22-7x2+b1
½âµÃx2=3£¬b1=14
¹ÊC1µÄ·½³ÌΪy=x2-7x+14
£¨¢ò£©ÉèµãP£¨x£¬y£©ÊÇCnÉÏÈÎÒâÒ»µã£¬
Ôò|AnP|=
| (x-xn)2+y2 |
| (x-xn)2+(x2+anx+bn)2 |
Áîg£¨x£©=£¨x-xn£©2+£¨x2+anx+bn£©2
Ôòg'£¨x£©=2£¨x-xn£©+2£¨x2+anx+bn£©£¨2x+an£©
ÓÉÌâÒâµÃg'£¨xn+1£©=0
¼´2£¨xn+1-xn£©+2£¨xn+12+anx+bn£©£¨2xn+1+an£©=0
ÓÖ¡ß2n=xn+1£¬¡à£¨xn+1-xn£©+2n£¨2xn+1+an£©=0£¨n¡Ý1£©£¬
¼´£¨1+2n+1£©xn+1-xn+2nan=0??£¨*£©
ÏÂÃæÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷xn=2n-1£¬
¢Ùµ±n=1ʱ£¬x1=1£¬µÈʽ³ÉÁ¢£»
¢Ú¼ÙÉèµ±n=kʱ£¬µÈʽ³ÉÁ¢£¬¼´xk=2k-1£¬
Ôòµ±n=k+1ʱ£¬ÓÉ£¨*£©Öª£¨1+2k+1£©xk+1-xk+2kak=0£¬
ÓÖak=2-4k-
| 1 |
| 2k-1 |
| xk-2kak |
| 1+2k+1 |
¼´n=k+1ʱ£¬µÈʽ³ÉÁ¢£®
ÓÉ¢Ù¢ÚÖª£¬µÈʽ¶Ôn¡ÊN*³ÉÁ¢£¬
¹Ê{xn}ÊǵȲîÊýÁУ®
µãÆÀ£º±¾ÌâµÄ×ÛºÏÐÔ¼«Ç¿£¬ÊǶàÖÖ֪ʶºÍ·½·¨µÄ»ã×Ü£¬´¦ÀíÆðÀ´ÄѶȽϴ󣬲»½öÐèÒª¾ß±¸×ÛºÏÔËÓÃ֪ʶµÄÄÜÁ¦£¬»¹ÒªÔËËã׼ȷ£¬²»×ßÍä·£¬ÏñÕâÑùµÄÌâÄ¿£¬ÔÚɽ¶«Ê¡µÄ½ü¼¸Äê¸ß¿¼ÖÐÉÙ¼û£¬²»ÊÇËùÓÐÈËËù×·Çó£¬Ö»Ìṩ¸ø²¿·ÖÊýѧ¹¦µ×Ç¿¾¢µÄͬѧÑо¿£¬Ï£ÍûÁ¿Á¦¶øÐУ®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿