题目内容

20.过抛物线$y=\frac{1}{4}{x^2}$的焦点的直线与抛物线交于A,B两点,O是抛物线的顶点.
(1)判断抛物线的准线和以AB为直径的圆的位置关系;
(2)求$\overrightarrow{OA}•\overrightarrow{OB}$的值.

分析 (1)取AB的中点M,分别过A、B、M作准线的垂线AP、BQ、MN,垂足分别为P、Q、N,作出图形,利用抛物线的定义及梯形的中位线性质可推导,|MN|=$\frac{1}{2}$|AB|,从而可判断圆与准线的位置关系.
(2)由抛物线x2=4y与过其焦点(0,1)的直线方程联立,消去y整理成关于x的一元二次方程,设出A(x1,y1)、B(x2,y2)两点坐标,$\overrightarrow{OA}•\overrightarrow{OB}$=x1•x2+y1•y2,由韦达定理可以求得答案.

解答 解:(1)取AB的中点M,分别过A、B、M作准线的垂线AP、BQ、MN,垂足分别为P、Q、N,如图所示:
由抛物线的定义可知,|AP|=|AF|,|BQ|=|BF|,
在直角梯形APQB中,|MN|=$\frac{1}{2}$(|AP|+|BQ|)=$\frac{1}{2}$(|AF|+|BF|)
=$\frac{1}{2}$|AB|,
故圆心M到准线的距离等于半径,
所以以AB为直径的圆与抛物线的准线相切.
(2)由题意知,抛物线x2=4y的焦点坐标为(0,1),∴直线AB的方程为y-1=kx,即y=kx+1
由$\left\{\begin{array}{l}{x}^{2}=4y\\ y=kx+1\end{array}\right.$得x2-4kx-4=0,设A(x1,y1),B(x2,y2),x1+x2=4k,x1x2=-4,
则,y1•y2=(kx1+1)•(kx2+1)=k2x1•x2+k(x1+x2)+1=1.
∴$\overrightarrow{OA}•\overrightarrow{OB}$=x1•x2+y1•y2=1-4=-3,

点评 本题考查直线与圆锥曲线的关系,解决问题的关键是联立抛物线方程与过其焦点的直线方程,利用韦达定理予以解决,抛物线过焦点弦的性质,关键是正确运用抛物线的定义,合理转化,综合性强.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网