题目内容
18.已知α是第二象限角,设点P(x,$\sqrt{5}$)是α终边上一点,且cosα=$\frac{\sqrt{2}}{4}$x,则4cos(α+$\frac{π}{2}$)-3tan α=$\sqrt{15}$-$\sqrt{10}$.分析 α是第二象限角,点P(x,$\sqrt{5}$)是α终边上一点,且cosα=$\frac{\sqrt{2}}{4}$x,可得$\frac{x}{\sqrt{{x}^{2}+5}}$=$\frac{\sqrt{2}x}{4}$,x<0,解得x.再利用三角函数的定义、诱导公式即可得出.
解答 解:∵α是第二象限角,点P(x,$\sqrt{5}$)是α终边上一点,且cosα=$\frac{\sqrt{2}}{4}$x,
∴$\frac{x}{\sqrt{{x}^{2}+5}}$=$\frac{\sqrt{2}x}{4}$,x<0,解得x=$-\sqrt{3}$.
∴P$(-\sqrt{3},\sqrt{5})$,∴cosα=-$\frac{\sqrt{6}}{4}$,sinα=$\frac{\sqrt{5}}{2\sqrt{2}}$=$\frac{\sqrt{10}}{4}$,tanα=$-\frac{\sqrt{10}}{\sqrt{6}}$=$-\frac{\sqrt{15}}{3}$.
∴4cos(α+$\frac{π}{2}$)-3tan α=-4sinα-3tanα=-4×$\frac{\sqrt{10}}{4}$-3×$\frac{\sqrt{15}}{-3}$=$\sqrt{15}$-$\sqrt{10}$.
故答案为:$\sqrt{15}$-$\sqrt{10}$.
点评 本题考查了三角函数的定义、诱导公式,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
10.四边形ABCD中,$\overrightarrow{AB}$=$\overrightarrow{DC}$,且|$\overrightarrow{AD}$$-\overrightarrow{AB}$|=|$\overrightarrow{AD}$$+\overrightarrow{AB}$|,则四边形ABCD是( )
| A. | 平行四边形 | B. | 菱形 | C. | 矩形 | D. | 正方形 |
7.命题$p:{({\frac{1}{2}})^x}$<1,命题q:lnx<1,则p是q成立的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
8.从一批羽毛球产品中任取一个,其质量小于4.8g的概率为0.3,质量小于4.85g的概率为0.32,那么质量在[4.8,4.85)(g)范围内的概率是( )
| A. | 0.62 | B. | 0.68 | C. | 0.02 | D. | 0.38 |