ÌâÄ¿ÄÚÈÝ
7£®Ä³ÊÐÐè¶Ôij»·³Ç¿ìËÙ³µµÀ½øÐÐÏÞËÙ£¬ÎªÁ˵÷ÑиõÀ·³µËÙÇé¿ö£¬ÓÚij¸öʱ¶ÎËæ»ú¶Ô100Á¾³µµÄËٶȽøÐÐÈ¡Ñù£¬²âÁ¿µÄ³µËÙÖÆ³ÉÈçÏÂÌõÐÎͼ£º¾¼ÆË㣺Ñù±¾µÄƽ¾ùÖµ¦Ì=85£¬±ê×¼²î¦Ò=2.2£¬ÒÔÆµÂÊÖµ×÷Ϊ¸ÅÂʵĹÀ¼ÆÖµ£®ÒÑÖª³µËÙ¹ýÂýÓë¹ý¿ì¶¼±»ÈÏΪÊÇÐè½ÃÕýËÙ¶È£¬Ïֹ涨³µËÙСÓÚ¦Ì-3¦Ò»ò³µËÙ´óÓÚ¦Ì+2¦ÒÊÇÐè½ÃÕýËÙ¶È£®
£¨1£©´Ó¸Ã¿ìËÙ³µµÀÉÏËùÓгµÁ¾ÖÐÈÎÈ¡1¸ö£¬Çó¸Ã³µÁ¾ÊÇÐè½ÃÕýËٶȵĸÅÂÊ£»
£¨2£©´ÓÑù±¾ÖÐÈÎÈ¡2¸ö³µÁ¾£¬ÇóÕâ2¸ö³µÁ¾¾ùÊÇÐè½ÃÕýËٶȵĸÅÂÊ£»
£¨3£©´Ó¸Ã¿ìËÙ³µµÀÉÏËùÓгµÁ¾ÖÐÈÎÈ¡2¸ö£¬¼ÇÆäÖÐÊÇÐè½ÃÕýËٶȵĸöÊýΪ¦Å£¬Çó¦ÅµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®
·ÖÎö £¨1£©¼ÇʼþAΪ¡°´Ó¸Ã¿ìËÙ³µµÀÉÏËùÓгµÁ¾ÖÐÈÎÈ¡1¸ö£¬¸Ã³µÁ¾ÊÇÐè½ÃÕýËÙ¶È¡±£¬ÒòΪ¦Ì-3¦Ò=78.4£¬¦Ì+2¦Ò=89.4£¬ÓÉÑù±¾ÌõÐÎͼ¿ÉµÃËùÇóµÄ¸ÅÂÊ£®
£¨2£©¼ÇʼþBΪ¡°´ÓÑù±¾ÖÐÈÎÈ¡2¸ö³µÁ¾£¬Õâ2¸ö³µÁ¾¾ùÊÇÐè½ÃÕýËÙ¶È¡±ÓÉÌâÉè¿ÉÖªÑù±¾ÈÝÁ¿Îª100£¬ÓÖÐè½ÃÕýËٶȸöÊýΪ5¸ö£¬¿ÉµÃËùÇó¸ÅÂÊ£®
£¨3£©Ðè½ÃÕýËٶȵĸöÊý¦Å·þ´Ó¶þÏî·Ö²¼£¬¼´?¡«B$£¨2£¬\frac{1}{20}£©$£¬¼´¿ÉµÃ³ö£®
½â´ð ½â£º£¨1£©¼ÇʼþAΪ¡°´Ó¸Ã¿ìËÙ³µµÀÉÏËùÓгµÁ¾ÖÐÈÎÈ¡1¸ö£¬¸Ã³µÁ¾ÊÇÐè½ÃÕýËÙ¶È¡±£¬
ÒòΪ¦Ì-3¦Ò=78.4£¬¦Ì+2¦Ò=89.4£¬
ÓÉÑù±¾ÌõÐÎͼ¿ÉÖª£¬ËùÇóµÄ¸ÅÂÊΪ$P£¨A£©=P£¨x£¼¦Ì-3¦Ò£©+P£¨x£¾¦Ì+2¦Ò£©=P£¨x£¼78.4£©+P£¨x£¾89.4£©=\frac{1}{100}+\frac{4}{100}=\frac{1}{20}$£®
£¨2£©¼ÇʼþBΪ¡°´ÓÑù±¾ÖÐÈÎÈ¡2¸ö³µÁ¾£¬Õâ2¸ö³µÁ¾¾ùÊÇÐè½ÃÕýËÙ¶È¡±
ÓÉÌâÉè¿ÉÖªÑù±¾ÈÝÁ¿Îª100£¬ÓÖÐè½ÃÕýËٶȸöÊýΪ5¸ö£¬¹ÊËùÇó¸ÅÂÊΪ$P£¨B£©=\frac{C_5^2}{{C_{100}^2}}=\frac{1}{495}$£®
£¨3£©Ðè½ÃÕýËٶȵĸöÊý¦Å·þ´Ó¶þÏî·Ö²¼£¬¼´?¡«B$£¨2£¬\frac{1}{20}£©$£¬
¡à$P£¨¦Å=0£©=C_2^0{£¨\frac{1}{20}£©^0}{£¨\frac{19}{20}£©^2}=\frac{361}{400}$£¬$P£¨¦Å=1£©=C_2^1{£¨\frac{1}{20}£©^1}{£¨\frac{19}{20}£©^1}=\frac{19}{200}$£¬$P£¨¦Å=2£©=C_2^2{£¨\frac{1}{20}£©^2}{£¨\frac{19}{20}£©^0}=\frac{1}{400}$£¬
Òò´Ë¦ÅµÄ·Ö²¼ÁÐΪ
| ¦Å | 0 | 1 | 2 |
| P | $\frac{361}{400}$ | $\frac{19}{200}$ | $\frac{1}{400}$ |
µãÆÀ ±¾Ì⿼²éÁËÌõÐÎͼµÄÐÔÖÊ¡¢¶þÏî·Ö²¼ÁеÄÐÔÖʼ°ÆäÊýѧÆÚÍû¡¢¹Åµä¸ÅÂʼÆË㹫ʽ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| A£® | $\frac{63}{32}$ | B£® | $\frac{31}{16}$ | C£® | $\frac{123}{64}$ | D£® | $\frac{127}{128}$ |
| A£® | 12 | B£® | 10 | C£® | 15 | D£® | 18 |
| A£® | $f£¨x£©=2sin£¨{\frac{1}{2}x+\frac{¦Ð}{4}}£©$ | B£® | $f£¨x£©=2sin£¨{\frac{1}{2}x+\frac{3¦Ð}{4}}£©$ | C£® | $f£¨x£©=2sin£¨{\frac{1}{4}x+\frac{3¦Ð}{4}}£©$ | D£® | $f£¨x£©=2sin£¨{2x+\frac{¦Ð}{4}}£©$ |
| A£® | $\frac{{3\sqrt{2}}}{4}$ | B£® | $\frac{{9\sqrt{2}}}{4}$ | C£® | $\frac{{3\sqrt{2}}}{2}$ | D£® | $\frac{{9\sqrt{2}}}{2}$ |
| A£® | 3 | B£® | $\frac{2}{3}$ | C£® | $\frac{1}{2}$ | D£® | -$\frac{1}{2}$ |