题目内容
| AB |
| a |
| AD |
| b |
| AA1 |
| c |
| BM |
| a |
| b |
| c |
分析:根据平行四边形的性质与向量的减法法则,得到
=
=
(
-
)=
(
-
).再由向量加法的三角形法则,得到
=
+
=
+
,从而可得
=
+
(
-
),进而得到本题答案.
| B1M |
| 1 |
| 2 |
| B 1D1 |
| 1 |
| 2 |
| A1D1 |
| A1B1 |
| 1 |
| 2 |
| b |
| a |
| BM |
| BB1 |
| B1M |
| AA1 |
| B1M |
| BM |
| c |
| 1 |
| 2 |
| b |
| a |
解答:解:∵平行四边形A1B1C1D1中,对角线A1C1、B1D1相交于点M,
∴向量
=
=
(
-
),
∵平行四边形AA1B1B中,
=
=
;平行四边形AA1D1D中,
=
=
,
∴
=
(
-
),
又∵
=
=
,
∴
=
+
=
+
(
-
)=-
+
+
.
故答案为:-
+
+
∴向量
| B1M |
| 1 |
| 2 |
| B 1D1 |
| 1 |
| 2 |
| A1D1 |
| A1B1 |
∵平行四边形AA1B1B中,
| A1B1 |
| A B |
| a |
| A1D1 |
| A D |
| b |
∴
| B1M |
| 1 |
| 2 |
| b |
| a |
又∵
| BB1 |
| AA1 |
| c |
∴
| BM |
| BB1 |
| B1M |
| c |
| 1 |
| 2 |
| b |
| a |
| 1 |
| 2 |
| a |
| 1 |
| 2 |
| b |
| c |
故答案为:-
| 1 |
| 2 |
| a |
| 1 |
| 2 |
| b |
| c |
点评:本题在平行六面体中,求向量
用
、
、
表示的式子,着重考查了平行四边形与平行六面体的性质、向量的定义与加减法则等知识,属于中档题.
| BM |
| AB |
| AD |
| AA1 |
练习册系列答案
相关题目