题目内容
已知函数f(x)=ex-x,其中e为自然对数的底数.
(1)若函数F(x)=f(x)-ax2-1的导函数F′(x)在[0,+∞)上是增函数,求实数a的最大值;
(2)求证:f(
)+f(
)+f(
)+…+f(
)>n+
.
(1)若函数F(x)=f(x)-ax2-1的导函数F′(x)在[0,+∞)上是增函数,求实数a的最大值;
(2)求证:f(
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n+1 |
| n |
| 4(n+2) |
考点:利用导数研究函数的单调性
专题:综合题,导数的综合应用
分析:(1)求导数,导函数F′(x)在[0,+∞)上是增函数,可得H'(x)=ex-2a≥0,即可求实数a的最大值;
(2)F(x)在[0,+∞)上是增函数,此时F(0)=0,F(x)≥0,即f(x)≥
x 2+1,x∈[0,+∞),可得f(
)≥
(
) 2+1,f(
)≥
(
) 2+1,…f(
)≥
(
) 2+1,各式相加,即可证明结论.
(2)F(x)在[0,+∞)上是增函数,此时F(0)=0,F(x)≥0,即f(x)≥
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n+1 |
| 1 |
| 2 |
| 1 |
| n+1 |
解答:
(1)解:F'(x)=f'(x)-2ax=(ex-1)-2ax,令H(x)=F'(x),
由题知H'(x)=ex-2a≥0,所以a≤
ex,x∈[0,+∞),
所以a≤
,即amax=
; (4分)
(2)证明:由(1)知当a=
时F'(x)在[0,+∞)上是增函数,故F'(x)≥F'(0)=0,
所以F(x)在[0,+∞)上是增函数,此时F(0)=0,F(x)≥0,即f(x)≥
x 2+1,x∈[0,+∞),(4分)
即有f(
)≥
(
) 2+1,f(
)≥
(
) 2+1,…f(
)≥
(
) 2+1,
各式相加有f(
)+f(
)+f(
)+…+f(
)≥
[(
)2+(
)2+…+(
)2]+n>
[
+
+…+
]+n=
[
-
+
-
+…+
-
]+n
=
(
-
)+n=n+
(6分)
由题知H'(x)=ex-2a≥0,所以a≤
| 1 |
| 2 |
所以a≤
| 1 |
| 2 |
| 1 |
| 2 |
(2)证明:由(1)知当a=
| 1 |
| 2 |
所以F(x)在[0,+∞)上是增函数,此时F(0)=0,F(x)≥0,即f(x)≥
| 1 |
| 2 |
即有f(
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n+1 |
| 1 |
| 2 |
| 1 |
| n+1 |
各式相加有f(
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n+1 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n+1 |
| 1 |
| 2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| (n+1)(n+2) |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| (n+1) |
| 1 |
| (n+2) |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| n+2 |
| n |
| 4(n+2) |
点评:本题考查导数知识的运用,考查函数的单调性,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关题目
设变量x,y满足条件
,则点P(x+y,x-y)所在区域的面积为( )
|
| A、4 | B、6 | C、8 | D、10 |