题目内容
13.定义在R上的偶函数f(x)满足f(x)=f(x+2),当x∈[3,4)时,f(x)=(1og2015888)x-2,f(sin1)与f(cos1)的大小关系为( )| A. | f(sin1)<f(cos1) | B. | f(sin1)=f(cos1) | C. | f(sin1)>f(cos1) | D. | 不确定 |
分析 根据已知分析出当x∈(0,1]时,函数f(x)为减函数,进而得到答案.
解答 解:∵1og2015888∈(0,1),
∴当x∈[3,4)时,f(x)=(1og2015888)x-2为增函数,
又∵函数f(x)满足f(x)=f(x+2),
即函数是以2为周期的周期函数,
∴当x∈[-1,0)时,函数f(x)为增函数,
又∵函数f(x)为偶函数,
∴当x∈(0,1]时,函数f(x)为减函数,
又∵sin1>cos1,
∴f(sin1)<f(cos1),
故选:A.
点评 本题考查的知识点是函数的单调性,函数的周期性,函数的奇偶性,对数的运算性质,三角函数求值,难度中档.
练习册系列答案
相关题目
3.已知全集U=R,若A={y|y=2x,x≤0},则∁RA=( )
| A. | (-∞,0]∪(1,+∞) | B. | (1,+∞) | C. | (-∞,0)∪[1,+∞) | D. | (-∞,0) |
4.若复数$z=\frac{1-3i}{1+i}$,则|z+1|=( )
| A. | 3 | B. | 2 | C. | $\sqrt{2}$ | D. | $\sqrt{5}$ |
2.我国延迟退休年龄将借鉴国外经验,拟对不同群体采取差别措施,并以“小步慢走”的方式实施.现对某市工薪阶层关于“延迟退休年龄”的态度进行调查,随机抽取了50人,他们月收入的频数分布及对“延迟退休年龄”反对的人数如下表.
(Ⅰ)由以上统计数据估算月收入高于5500的调查对象中,持反对态度的概率;
(Ⅱ)若对月收入在[1500,2500),[2500,3500)的被调查对象中各随机选取两人进行跟踪调查,记选中的4人中赞成“延迟退休年龄”的人数为ξ,求随机变量ξ的分布列和数学期望.
| 月收入(元) | [1500,2500) | [2500,3500) | [3500,4500) | [4500,5500) | [5500,6500) | [6500,7500) |
| 频数 | 5 | 10 | 14 | 11 | 6 | 4 |
| 反对人数 | 4 | 8 | 11 | 6 | 2 | 1 |
(Ⅱ)若对月收入在[1500,2500),[2500,3500)的被调查对象中各随机选取两人进行跟踪调查,记选中的4人中赞成“延迟退休年龄”的人数为ξ,求随机变量ξ的分布列和数学期望.