题目内容
2.已知函数$f(x)=\frac{1}{{{2^x}-1}}+a$为奇函数,则实数a=$\frac{1}{2}$,函数f(x)在[1,3]上的值域为[$\frac{9}{14}$,$\frac{3}{2}$].分析 根据函数奇偶性的定义,利用条件f(-x)=-f(x),建立方程关系进行求解即可,利用函数的单调性进行求解即可.
解答 解:∵f(x)是(-∞,0)∪(0,+∞)上是奇函数,
∴f(-x)=-f(x),
即$\frac{1}{{2}^{-x}-1}$+a=-$\frac{1}{{2}^{x}-1}$-a,
即$\frac{{2}^{x}}{1-{2}^{x}}$+a=-$\frac{1}{{2}^{x}-1}$-a,
则2a=+a=-$\frac{1}{{2}^{x}-1}$-$\frac{{2}^{x}}{1-{2}^{x}}$=$\frac{1}{1-{2}^{x}}$-$\frac{{2}^{x}}{1-{2}^{x}}$=1,
则a=$\frac{1}{2}$,
则f(x)=$\frac{1}{{2}^{x}-1}$+$\frac{1}{2}$在[1,3]为减函数,
则f(3)≤f(x)≤f(1),
即$\frac{9}{14}$≤f(x)≤$\frac{3}{2}$,
即函数的值域为[$\frac{9}{14}$,$\frac{3}{2}$],
故答案为:$\frac{1}{2}$,[$\frac{9}{14}$,$\frac{3}{2}$]
点评 本题主要考查函数奇偶性的应用以及函数值域的求解,根据条件建立方程关系是解决本题的关键.
练习册系列答案
相关题目
7.已知函数$f(x)=\frac{1}{x+1}$,点O为坐标原点,点${A_n}(n,f(n))(n∈{N^*})$,向量$\overrightarrow a=(0,1),{θ_n}$是向量${\overrightarrow{OA}_n}$与$\overrightarrow a$的夹角,则$\frac{{cos{θ_1}}}{{sin{θ_1}}}+\frac{{cos{θ_2}}}{{sin{θ_2}}}+…+\frac{{cos{θ_{2016}}}}{{sin{θ_{2016}}}}$=( )
| A. | $\frac{2016}{2017}$ | B. | $\frac{2015}{2016}$ | C. | $\frac{2014}{2015}$ | D. | 1 |
11.下列各组函数中,表示同一个函数的是( )
| A. | $f(x)=\frac{{{x^2}-1}}{x-1},g(t)=t+1$ | B. | $f(x)=lg\sqrt{x}+lg\sqrt{1-x},g(x)=lg\sqrt{x(1-x)}$ | ||
| C. | $f(x)=\root{3}{x^3},g(x)=x+1$ | D. | $f(x)={(\sqrt{x})^2},g(x)=x$ |