题目内容

12.已知直线l过点(0,1),且倾斜角为$\frac{π}{6}$,当此直线与抛物线x2=4y交于A,B时,|AB|=(  )
A.$\frac{16}{3}$B.16C.8D.$\frac{{16\sqrt{3}}}{3}$

分析 求出直线方程,直线方程与抛物线方程联立,利用弦长公式求解即可.

解答 解:直线$l:y=\frac{{\sqrt{3}}}{3}x+1$与x2=4y联立得${x^2}-\frac{{4\sqrt{3}}}{3}x-4=0$,$△=\frac{64}{3}$,
x1+x2=$\frac{4\sqrt{3}}{3}$,x1x2=-4
故$|{AB}|=\sqrt{1+{k^2}}•|{{x_1}-{x_2}}|=\sqrt{1+\frac{1}{3}}•\frac{8}{{\sqrt{3}}}=\frac{16}{3}$,
故选:A.

点评 本题考查直线与抛物线的位置关系的应用,考查计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网