ÌâÄ¿ÄÚÈÝ

ÒÑÖªÍÖÔ²E£º
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ
2
2
£¬A1£¬A2ÊÇÍÖÔ²EµÄ³¤ÖáµÄÁ½¸ö¶Ëµã£¨A2λÓÚA1ÓҲࣩ£¬BÊÇÍÖÔ²ÔÚyÖáÕý°ëÖáÉϵĶ¥µã£¬µãFÊÇÍÖÔ²EµÄÓÒ½¹µã£¬µãMÊÇxÖáÉÏλÓÚA2ÓÒ²àµÄÒ»µã£¬ÇÒÂú×ã
1
|A1M|
+
1
|A2M|
=
2
|FM|
=2£®
£¨1£©ÇóÍÖÔ²EµÄ·½³ÌÒÔ¼°µãMµÄ×ø±ê£»
£¨2£©ÊÇ·ñ´æÔÚ¾­¹ýµã(0£¬
2
)
ÇÒбÂÊΪkµÄÖ±ÏßlÓëÍÖÔ²E½»ÓÚ²»Í¬µÄÁ½µãPºÍQ£¬Ê¹µÃÏòÁ¿
OP
+
OQ
Óë
A2B
¹²Ïߣ¿Èç¹û´æÔÚ£¬Çó³öÖ±ÏßlµÄ·½³Ì£¬Èç¹û²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
¿¼µã£ºÖ±ÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÎÊÌâ
רÌ⣺Բ׶ÇúÏßÖеÄ×îÖµÓ뷶ΧÎÊÌâ
·ÖÎö£º£¨1£©ÉèµãF£¨c£¬0£©£¬M£¨x£¬0£©£¬x£¾a£¬ÓÉÒÑÖªµÃ
1
x+a
+
1
x-a
=
2
x-c
£¬´Ó¶øx=
a2
c
£¬ÔÙÓÉ
c
a
=
2
2
£¬ÄÜÇó³öÍÖÔ²·½³ÌºÍMµã×ø±ê£®
£¨2£©ÓÉÌâÒ⣬ֱÏßlµÄ·½³ÌΪy=kx+
2
£¬ÁªÁ¢·½³Ì
y=kx+
2
x2
2
+y2=1
£¬µÃ(
1
2
+k2)x2+2
2
kx+1=0
£¬ÓÉ´ËÀûÓøùµÄÅбðʽ¡¢Î¤´ï¶¨Àí£¬½áºÏÒÑÖªÌõ¼þÍÆµ¼³ö²»´æÔÚ·ûºÏÌâÒâµÄÖ±Ïßl£®
½â´ð£º ½â£º£¨1£©ÉèµãF£¨c£¬0£©£¬M£¨x£¬0£©£¬x£¾a£¬
ÓÉ
1
|A1M|
+
1
|A2M|
=
2
|FM|
=2£¬
µÃ
1
x+a
+
1
x-a
=
2
x-c
£¬
½âµÃx=
a2
c
£¬
ÓÖ
c
a
=
2
2
£¬b2=a2-c2£¬
¡àa=
2
£¬b=c=1£¬
¡àÍÖÔ²·½³ÌΪ
x2
2
+y2=1
£¬
Mµã×ø±êΪM£¨2£¬0£©£®
£¨2£©ÓÉÌâÒ⣬ֱÏßlµÄ·½³ÌΪy=kx+
2
£¬
ÁªÁ¢·½³Ì
y=kx+
2
x2
2
+y2=1
£¬µÃ(
1
2
+k2)x2+2
2
kx+1=0
£¬
¡ßÖ±ÏßlÓëÍÖÔ²E½»ÓÚ²»Í¬µÄÁ½µãP£¬Q£¬
¡à¡÷=8k2-4(
1
2
+k2)=4k2-2£¾0
£¬¡àk2£¾
1
2
£¬
ÁîP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬
¡à
OP
+
OQ
=(x1+x2£¬y1+y2)
£¬
x1+x2=-
4
2
k
1+2k2
£¬y1+y2=k(x1+x2)+2
2
=
2
2
1+2k2
£¬
¡à
OP
+
OQ
=£¨-
4
2
k
1+2k
£¬
2
2
2k2
£©=
2
2
1+2k2
(-2k£¬1)
£¬
ÓÉÌâÖªA2(
2
£¬0)£¬B(0£¬1)
£¬
A2B
=(-
2
£¬1)
£¬
ҪʹÏòÁ¿
OP
+
OQ
Óë
A2B
¹²Ïߣ¬
Ôò2k=
2
£¬¼´k=
2
2
£¬µ«²»Âú×ãk2£¾
1
2
£¬
¹Ê²»´æÔÚ·ûºÏÌâÒâµÄÖ±Ïßl£®¡­£¨14·Ö£©
µãÆÀ£º±¾Ì⿼²éÍÖÔ²EµÄ·½³ÌÒÔ¼°µãMµÄ×ø±êµÄÇ󷨣¬¿¼²éÂú×ãÌõ¼þµÄÖ±Ïß·½³ÌÊÇ·ñ´æÔÚµÄÅжÏÓëÇ󷨣¬½âÌâʱҪÈÏÕæÉóÌ⣬עÒ⺯ÊýÓë·½³Ì˼ÏëµÄºÏÀíÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø