题目内容
3.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一条渐近线平行于直线l:x+2y+5=0,双曲线的一个焦点在直线l上,则双曲线的方程为( )| A. | $\frac{{3{x^2}}}{25}-\frac{{3{y^2}}}{100}=1$ | B. | $\frac{{3{x^2}}}{100}-\frac{{3{y^2}}}{25}=1$ | ||
| C. | $\frac{x^2}{20}-\frac{y^2}{5}=1$ | D. | $\frac{x^2}{5}-\frac{y^2}{20}=1$ |
分析 求出双曲线的渐近线方程,求出双曲线的焦点坐标,然后求解双曲线方程.
解答 解:双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一条渐近线平行于直线l:x+2y+5=0,
可得双曲线的渐近线方程为:x±2y=0,直线l:x+2y+5=0与x轴的交点为:(-5,0),
可得c=5,$\frac{b}{a}$=$\frac{1}{2}$,c2=a2+b2.解得a=2$\sqrt{5}$,b=$\sqrt{5}$,
所求双曲线方程为:$\frac{{x}^{2}}{20}-\frac{{y}^{2}}{5}=1$.
故选:C.
点评 本题考查双曲线的简单性质的应用,双曲线方程的求法,考查计算能力.
练习册系列答案
相关题目
13.在空间直角坐标系O-xyz中,向量$\overrightarrow{OA}$=(a,2,8),$\overrightarrow{OB}$=(2,7,0),若|AB|>7$\sqrt{2}$,则实数a的取值范围为( )
| A. | (-1,5) | B. | (-∞,-1) | C. | (5,+∞) | D. | (-∞,-1)∪(5,+∞) |
18.已知O为坐标原点,直线y=2与x2+y2+Dx-4y=0交于两点M,N,则∠MON=( )
| A. | 30° | B. | 45° | C. | 60° | D. | 90° |
15.
如图,三棱锥A-BCD中,AB=AC=BD=CD=3,AD=BC=2,点M,N分别是AD,BC的中点,则异面直线AN,CM所成的角的余弦值为( )
| A. | $\frac{7}{8}$ | B. | $\frac{3}{4}$ | C. | $\frac{1}{8}$ | D. | $-\frac{7}{8}$ |