题目内容
在平面直角坐标系中,椭圆的焦距为2,以O为圆心,为半径的圆,过点作圆的两切线互相垂直,则离心率= 。
如右图(1)所示,定义在区间上的函数,如果满
足:对,常数A,都有成立,则称函数
在区间上有下界,其中称为函数的下界. (提示:图(1)、
(2)中的常数、可以是正数,也可以是负数或零)
(
Ⅰ)试判断函数在上是否有下界?并说明理由;
(Ⅱ)又如具有右图(2)特征的函数称为在区间上有上界.
请你类比函数有下界的定义,给出函数在区间上
有上界的定义,并判断(Ⅰ)中的函数在上是否
有上界?并说明理由;
(Ⅲ)若函数在区间上既有上界又有下界,则称函数
在区间上有界,函数叫做有界函数.试探究函数 (是常数)是否是(、是常数)上的有
界函数?
经过圆的圆心C,且与直线垂直的直线方程是 .
设为实数,是方程的两个实根,数列满足,,(…).
(1)证明:,;
(2)求数列的通项公式;
(3)若,,求的前项和.
为了调查某厂工人生产某种产品的能力,随机抽查 了20位工人某天生产该产品的数量.产品数量的分组区间为,,由此得到频率分布直方图如图3,则这20名工人中一天生产该产品数量在的人数是 .
如图,某住宅小区的平面图呈圆心角为的扇形AOB,小区的两个出入口设置在点A及点C处,且小区里有一条平行于BO的小路CD,已知某人从C沿CD走到D用了10分钟,从D沿DA走到A用了6分钟,若此人步行的速度为每分钟50米,求该扇形的半径OA的长(精确到1米)
设,,则“”是“”的( )
A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分也不必要条件
设函数.
(Ⅰ)求的单调区间;
(Ⅱ)设函数,若当时,恒成立,求的取值范围.
函数f(x)=2cosxsinx是( )
A. 最小正周期为2π的偶函数 B. 最小正周期为2π的奇函数
C. 最小正周期为π的偶函数 D. 最小正周期为π的奇函数