题目内容
已知数列{an}的前n项和Sn满足Sn+an=
+
(n∈N*),且bn=an+
.
(1)求证:数列{bn}是等比数列,并通项公式bn;
(2)设cn=nan,Tn为数列{cn}的前n项和,求Tn.
| 3 |
| 4 |
| n-2 |
| 2n(n+1)(n+2) |
| 1 |
| n(n+1)(n+2) |
(1)求证:数列{bn}是等比数列,并通项公式bn;
(2)设cn=nan,Tn为数列{cn}的前n项和,求Tn.
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(1)由已知得2an+1-an=
-
=-
,从而bn+1-2bn=an+1-2an+
-
,进而bn+1=
bn,由此能证明数列{bn}是首项为
,公比为
的等比数列,从而bn=
.
(2)由an=bn-
=
-
,得cn=nan=
-
,由此利用分组求和法、错位相减法、裂项求和法能求出数列{cn}的前n项和.
| n(n-1) |
| 2n(n+1)(n+2)(n+3) |
| (n-2)(n+3) |
| 2n(n+1)(n+2)(n+3) |
| n-3 |
| n(n+1)(n+2)(n+3) |
| 2 |
| (n+1)(n+2)(n+3) |
| 1 |
| n(n+1)(n+2) |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2n |
(2)由an=bn-
| 1 |
| n(n+1)(n+2) |
| 1 |
| 2n |
| 1 |
| n(n+1)(n+2) |
| n |
| 2n |
| 1 |
| (n+1)(n+2) |
解答:
(1)证明:∵数列{an}的前n项和Sn满足Sn+an=
+
,
∴Sn+1+an+1=
+
,
两式作差得2an+1-an=
-
=
=-
,(3分)
又bn=an+
,则bn+1=an+1+
,
∴bn+1-2bn=an+1-2an+
-
,
整理得bn+1=
bn,
又b1=a1+
=
+
=
,
故数列{bn}是首项为
,公比为
的等比数列,
∴bn=
.(6分)
(2)解:由(1)可得an=bn-
=
-
,
∴cn=nan=
-
,(7分)
故Tn=(
+
+
+…+
)-[
+
+…+
],
设Fn=
+
+
+…+
,
则
Fn=
+
+
+…+
,
作差得
Fn=
+
+
+…+
-
,
∴Fn=2-
.(9分)
设Gn=
+
+…+
,
则Gn=
-
+
-
+…+
-
=
-
,(11分)
故Tn=2-
-(
-
)=
-
+
.(12)
| 3 |
| 4 |
| n-2 |
| 2n(n+1)(n+2) |
∴Sn+1+an+1=
| 3 |
| 4 |
| n-1 |
| 2(n+1)(n+2)(n+3) |
两式作差得2an+1-an=
| n(n-1) |
| 2n(n+1)(n+2)(n+3) |
| (n-2)(n+3) |
| 2n(n+1)(n+2)(n+3) |
=
| -2n+6 |
| 2n(n+1)(n+2)(n+3) |
=-
| n-3 |
| n(n+1)(n+2)(n+3) |
又bn=an+
| 1 |
| n(n+1)(n+2) |
| 1 |
| (n+1)(n+2)(n+3) |
∴bn+1-2bn=an+1-2an+
| 2 |
| (n+1)(n+2)(n+3) |
| 1 |
| n(n+1)(n+2) |
整理得bn+1=
| 1 |
| 2 |
又b1=a1+
| 1 |
| 6 |
| 1 |
| 3 |
| 1 |
| 6 |
| 1 |
| 2 |
故数列{bn}是首项为
| 1 |
| 2 |
| 1 |
| 2 |
∴bn=
| 1 |
| 2n |
(2)解:由(1)可得an=bn-
| 1 |
| n(n+1)(n+2) |
=
| 1 |
| 2n |
| 1 |
| n(n+1)(n+2) |
∴cn=nan=
| n |
| 2n |
| 1 |
| (n+1)(n+2) |
故Tn=(
| 1 |
| 2 |
| 2 |
| 4 |
| 3 |
| 8 |
| n |
| 2n |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| (n+1)(n+2) |
设Fn=
| 1 |
| 2 |
| 2 |
| 4 |
| 3 |
| 8 |
| n |
| 2n |
则
| 1 |
| 2 |
| 1 |
| 4 |
| 2 |
| 8 |
| 3 |
| 16 |
| n |
| 2n+1 |
作差得
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 8 |
| 1 |
| 2n |
| n |
| 2n+1 |
∴Fn=2-
| n+2 |
| 2n |
设Gn=
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| (n+1)(n+2) |
则Gn=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 2 |
| 1 |
| n+2 |
故Tn=2-
| n+2 |
| 2n |
| 1 |
| 2 |
| 1 |
| n+2 |
| 3 |
| 2 |
| n+2 |
| 2n |
| 1 |
| n+2 |
点评:本题主要考查数列的通项公式、前n项和公式的求法,考查等差数列、等比数列等基础知识,考查抽象概括能力,推理论证能力,运算求解能力,考查化归与转化思想、函数与方程思想,解题时要注意分组求和法、错位相减法、裂项求和法的合理运用.
练习册系列答案
相关题目
抛掷一个骰子,记A为事件“落地时向上的数为奇数”,B为事件“落地时向上的数是偶数”,C为事件“落地时向上的数是3的倍数”,下面是对立事件的是( )
| A、A与B | B、A与C |
| C、B与C | D、A、B与C |
已知双曲线的一个焦点与抛物线x2=8y的焦点重合,且其渐近线的方程为
x±y=0,则该双曲线的标准方程为( )
| 3 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|