题目内容

已知数列{an}的前n项和Sn满足Sn+an=
3
4
+
n-2
2n(n+1)(n+2)
(n∈N*),且bn=an+
1
n(n+1)(n+2)

(1)求证:数列{bn}是等比数列,并通项公式bn
(2)设cn=nan,Tn为数列{cn}的前n项和,求Tn
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(1)由已知得2an+1-an=
n(n-1)
2n(n+1)(n+2)(n+3)
-
(n-2)(n+3)
2n(n+1)(n+2)(n+3)
=-
n-3
n(n+1)(n+2)(n+3)
,从而bn+1-2bn=an+1-2an+
2
(n+1)(n+2)(n+3)
-
1
n(n+1)(n+2)
,进而bn+1=
1
2
bn
,由此能证明数列{bn}是首项为
1
2
,公比为
1
2
的等比数列,从而bn=
1
2n

(2)由an=bn-
1
n(n+1)(n+2)
=
1
2n
-
1
n(n+1)(n+2)
,得cn=nan=
n
2n
-
1
(n+1)(n+2)
,由此利用分组求和法、错位相减法、裂项求和法能求出数列{cn}的前n项和.
解答: (1)证明:∵数列{an}的前n项和Sn满足Sn+an=
3
4
+
n-2
2n(n+1)(n+2)

Sn+1+an+1=
3
4
+
n-1
2(n+1)(n+2)(n+3)

两式作差得2an+1-an=
n(n-1)
2n(n+1)(n+2)(n+3)
-
(n-2)(n+3)
2n(n+1)(n+2)(n+3)

=
-2n+6
2n(n+1)(n+2)(n+3)

=-
n-3
n(n+1)(n+2)(n+3)
,(3分)
又bn=an+
1
n(n+1)(n+2)
,则bn+1=an+1+
1
(n+1)(n+2)(n+3)

∴bn+1-2bn=an+1-2an+
2
(n+1)(n+2)(n+3)
-
1
n(n+1)(n+2)

整理得bn+1=
1
2
bn

b1=a1+
1
6
=
1
3
+
1
6
=
1
2

故数列{bn}是首项为
1
2
,公比为
1
2
的等比数列,
∴bn=
1
2n
.(6分)
(2)解:由(1)可得an=bn-
1
n(n+1)(n+2)

=
1
2n
-
1
n(n+1)(n+2)

∴cn=nan=
n
2n
-
1
(n+1)(n+2)
,(7分)
故Tn=(
1
2
+
2
4
+
3
8
+…+
n
2n
)
-[
1
2×3
+
1
3×4
+…+
1
(n+1)(n+2)
],
设Fn=
1
2
+
2
4
+
3
8
+…+
n
2n

1
2
Fn
=
1
4
+
2
8
+
3
16
+…+
n
2n+1

作差得
1
2
Fn
=
1
2
+
1
4
+
1
8
+…+
1
2n
-
n
2n+1

∴Fn=2-
n+2
2n
.(9分)
设Gn=
1
2×3
+
1
3×4
+…+
1
(n+1)(n+2)

则Gn=
1
2
-
1
3
+
1
3
-
1
4
+…+
1
n+1
-
1
n+2
=
1
2
-
1
n+2
,(11分)
故Tn=2-
n+2
2n
-(
1
2
-
1
n+2
)=
3
2
-
n+2
2n
+
1
n+2
.(12)
点评:本题主要考查数列的通项公式、前n项和公式的求法,考查等差数列、等比数列等基础知识,考查抽象概括能力,推理论证能力,运算求解能力,考查化归与转化思想、函数与方程思想,解题时要注意分组求和法、错位相减法、裂项求和法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网