题目内容

2.已知全集U=R,集合A={x|2≤x<7},B={x|0<log3x<2},C={x|a<x<a+1}.
(1)求A∪B,(∁UA)∩B;
(2)如果A∩C=∅,求实数a的取值范围.

分析 (1)分别求出集合A,集合B,从而求出A∪B,∁RA,B∩(∁RA);
(2)通过C是非空集合,A∩C=∅,而a+1≤2或a≥7,从而求出a的范围.

解答 解:(1)由0<log3x<2,得1<x<9∴B=(1,9),
∵A={x|2≤x<7}=[2,7),
∴A∪B=(1,9)
UA=(-∞,2)∪[7,+∞),
∴(∁UA)∩B=(1,2)∪[7,9)
(2)C={x|a<x<a+1}=(a,a+1)
∵A∩C=∅,
∴a+1≤2或a≥7,解得:a≤1或a≥7

点评 本题考查了对数函数的单调性的运用以及集合的运算,关键是正确化简集合,然后由进行集合的运算,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网