题目内容

3.已知函数f(x)=x2-2ax+5(a>1),g(x)=log3x,若函数f(x)的定义域与值域都是[1,a],则对于任意的x1,x2∈[1,a+1]时,总有$|{f({x_1})-g({x_2})}|≤{t^2}+2t-1$恒成立,则t的取值范围为(  )
A.[1,3]B.[-1,3]C.[1,+∞)∪(-∞,-3]D.[3,+∞)∪(-∞,-1]

分析 根据二次函数的对称轴判断出函数单调性,得出a=f(1),求出a=2,进而求出只需t2+2t-3≥0,得出答案.

解答 解:函数f(x)=x2-2ax+5(a>1)的对称轴为x=a∈[1,a]
∴函数f(x)=x2-2ax+5(a>1)在[1,a]上单调递减
∵函数f(x)的定义域和值域均为[1,a]
∴a=f(1)
∴a=2
∴f(x)=x2-4x+5,g(x)=log3x.
∵对于任意的x1,x2∈[1,3],1≤f(x)≤2,0≤g(x)≤1,
∴t2+2t-3≥0,
∴t∈[1,+∞)∪(-∞,-3].
故选:C.

点评 本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网