题目内容

已知曲线C的方程是(x-
|x|
x
2+(y-
|y|
y
2=8,若点P,Q在曲线C上,则|PQ|的最大值是(  )
A、6
2
B、8
2
C、8
D、6
考点:曲线与方程,两点间距离公式的应用
专题:计算题,直线与圆
分析:先分类讨论化简方程,再根据方程对应的曲线,即可得到结论.
解答: 解:当x>0,y>0时,方程是(x-1)2+(y-1)2=8;
当 x>0,y<0 时,方程是(x-1)2+(y+1)2=8;
当 x<0,y>0 时,方程是(x+1)2+(y-1)2=8;
当 x<0,y<0 时,方程是(x+1)2+(y+1)2=8
曲线C既是中心对称图形,又是轴对称图形,对称中心为(0,0),对称轴为x,y轴,点P,Q在曲线C上,当且仅当P,Q与圆弧所在圆心共线时取得最大值,|PQ|的最大值是圆心距加两个半径,即6
2

故选:A.
点评:本题考查曲线与方程的概念,体现分类讨论、数形结合的数学思想,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网