题目内容

9.已知M(x0,y0)是双曲线C:x2-y2=1上的一点,F1,F2是C上的两个焦点,若$\overrightarrow{M{F_1}}•\overrightarrow{M{F_2}}<0$,则x0的取值范围是(  )
A.$(-\sqrt{2},\sqrt{2})$B.$(-\sqrt{3},\sqrt{3})$C.$(-\frac{{\sqrt{6}}}{3},\frac{{\sqrt{6}}}{3})$D.(-$\frac{\sqrt{6}}{2}$,-1]∪[1,$\frac{\sqrt{6}}{2}$)

分析 将M代入双曲线的方程,求得两焦点的坐标,运用向量的数量积的坐标表示,解不等式即可得到M的横坐标的范围.

解答 解:由题意可得x02-y02=1,①
F1,F2是C上的两个焦点,且为(-$\sqrt{2}$,0),($\sqrt{2}$,0),
由$\overrightarrow{M{F_1}}•\overrightarrow{M{F_2}}<0$,
可得(-$\sqrt{2}$-x0,0-y0)•($\sqrt{2}$-x0,0-y0)<0,
即为(-$\sqrt{2}$-x0)($\sqrt{2}$-x0)+(-y02<0,
即有x02+y02<2,②
由①②可得2x02<3,
由x0≥1或x0≤-1
解得-$\frac{\sqrt{6}}{2}$<x0<≤-1或1≤x0<$\frac{\sqrt{6}}{2}$.
故选:D.

点评 本题考查双曲线的方程的运用,向量数量积的坐标表示,以及解不等式的能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网