题目内容

17.已知椭圆C1:$\frac{{x}^{2}}{5}$+y2=1与双曲线C2的公共焦点为F1,F2,A,B分别为C1,C2在第二、第四象限的公共点.若四边形AF1BF2为矩形,则C2的离心率是(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{2\sqrt{3}}{3}$D.$\frac{\sqrt{6}}{2}$

分析 设|AF1|=x,|AF2|=y,利用椭圆的定义,四边形AF1BF2为矩形,可求出x,y的值,进而可得双曲线的几何量,即可求出双曲线的离心率.

解答 解:设|AF1|=x,|AF2|=y,
∵点A为椭圆椭圆C1:$\frac{{x}^{2}}{5}$+y2=1上的点,
∴2a=$2\sqrt{5}$,b=1,c=2;
∴|AF1|+|AF2|=2a=2$\sqrt{5}$,即x+y=2$\sqrt{5}$;①
又四边形AF1BF2为矩形,
∴|AF1|2+|AF2|2=|F1F2|2
即x2+y2=(2c)2=16,②
由①②得$\left\{\begin{array}{l}{x+y=2\sqrt{5}}\\{{x}^{2}+{y}^{2}=16}\end{array}\right.$,
解得y=$\sqrt{5}+\sqrt{3}$,x=$\sqrt{5}-\sqrt{3}$,
设双曲线C2的实轴长为2a′,焦距为2c′,
则2a′=|AF2|-|AF1|=y-x=2$\sqrt{3}$,2c′=4,
∴C2的离心率是e=$\frac{4}{2\sqrt{3}}$=$\frac{2\sqrt{3}}{3}$.
故选:C.

点评 本题考查椭圆与双曲线的简单性质,求得|AF1|与|AF2|是关键,考查分析与运算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网