题目内容
(5分)(2011•重庆)设双曲线的左准线与两条渐近线交于A,B两点,左焦点为在以AB为直径的圆内,则该双曲线的离心率的取值范围为( )
| A.(0, | B.(1, | C.( | D.( |
B
试题分析:求出渐近线方程及准线方程;求得它们的交点A,B的坐标;利用圆内的点到圆心距离小于半径,列出参数a,b,c满足的不等式,求出离心率的范围.
解:渐近线y=±
准线x=±
求得A(
左焦点为在以AB为直径的圆内,
得出
b<a,
c2<2a2
∴
故选B.
点评:本题考查双曲线的准线、渐近线方程形式、考查园内的点满足的不等条件、注意双曲线离心率本身要大于1.
练习册系列答案
相关题目