题目内容
20.已知点P(x,y)的坐标满足$\left\{\begin{array}{l}{x+y-4≤0}\\{1≤x≤2}\\{y≥0}\end{array}\right.$则z=x+2y的最大值为( )| A. | 4 | B. | 5 | C. | 6 | D. | 7 |
分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.
解答 解:由约束条件$\left\{\begin{array}{l}{x+y-4≤0}\\{1≤x≤2}\\{y≥0}\end{array}\right.$作出可行域如图,![]()
联立$\left\{\begin{array}{l}{x=1}\\{x+y-4=0}\end{array}\right.$,得A(1,3),
化目标函数z=x+2y为y=-$\frac{1}{2}x+\frac{z}{2}$,
由图可知,当直线y=-$\frac{1}{2}x+\frac{z}{2}$过A时,直线在y轴上的截距最大,z最大为1+2×3=7.
故选:D.
点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.
练习册系列答案
相关题目
3.不等式|3x-2|>1的解集为( )
| A. | (-∞,-$\frac{1}{3}$)∪(1,+∞) | B. | (-$\frac{1}{3}$,1) | C. | (-∞,$\frac{1}{3}$)∪(1,+∞) | D. | ($\frac{1}{3}$,1) |
8.已知函数f(x)=|log4x|,正实数m、n满足m<n,且f(m)=f(n),若f(x)在区间[m5,n]上的最大值为5,则m、n的值分别为( )
| A. | $\frac{1}{2}$、2 | B. | $\frac{1}{4}$、4 | C. | $\frac{1}{4}$、2 | D. | $\frac{1}{2}$、4 |
5.已知数列{an}为等比数列,且a4•a6=2a5,设等差数列{bn}的前n项和为Sn,若b5=2a5,则S9=( )
| A. | 36 | B. | 27 | C. | 54 | D. | 45 |
12.若a=ln2,b=5${\;}^{-\frac{1}{2}}$,c=sin30°,则a,b,c的大小关系( )
| A. | a<b<c | B. | b<a<c | C. | b<c<a | D. | c<b<a |
9.函数y=$\sqrt{sin(\frac{π}{3}-2x)}$的单调增区间是( )
| A. | [k$π-\frac{π}{12}$,k$π+\frac{π}{6}$],k∈Z | B. | [k$π-\frac{π}{3}$,k$π-\frac{π}{12}$],k∈Z | ||
| C. | [k$π-\frac{π}{12}$,k$π+\frac{5π}{12}$],k∈Z | D. | [k$π+\frac{5π}{12}$,k$π+\frac{11π}{12}$],k∈Z |