题目内容
如图,在直三棱柱ABC-A1B1C1中,AB=2,AC=AA1=2
,∠ABC=
.
(1)证明:AB⊥A1C;
(2)求二面角A-A1C-B的正弦值.

| 3 |
| π |
| 3 |
(1)证明:AB⊥A1C;
(2)求二面角A-A1C-B的正弦值.
(1)证明:在△ABC中,由正弦定理可求得sin∠ACB=
⇒∠ACB=
∴AB⊥AC
以A为原点,分别以AB、AC、AA1为
x、y、z轴,建立空间直角坐标系,如图
则A(0,0,0)A1(0,0,2
)B(2,0,0)C(0,2
,0)
=(2,0,0)
=(0,2
,-2
)
•
=0⇒
⊥
即AB⊥A1C.
(2)由(1)知
=(2,0,-2
)
设二面角A-A1C-B的平面角为α,cosα=cos<
,
>=
=
=
∴sinα=
=

| 1 |
| 2 |
| π |
| 6 |
∴AB⊥AC
以A为原点,分别以AB、AC、AA1为
x、y、z轴,建立空间直角坐标系,如图
则A(0,0,0)A1(0,0,2
| 3 |
| 3 |
| AB |
| A1C |
| 3 |
| 3 |
| AB |
| A1C |
| AB |
| A1C |
即AB⊥A1C.
(2)由(1)知
| A1B |
| 3 |
设二面角A-A1C-B的平面角为α,cosα=cos<
| n |
| m |
| ||||
|
|
2
| ||
2×
|
| ||
| 5 |
∴sinα=
| 1-cos2α |
| ||
| 5 |
练习册系列答案
相关题目