题目内容

18.四棱锥P-ABCD中,底面ABCD为直角梯形,AB⊥AD,BC∥AD,且AB=BC=2,AD=3,PA⊥平面ABCD且PA=2,则PB与平面PCD所成角的正弦值为(  )
A.$\frac{\sqrt{42}}{7}$B.$\frac{\sqrt{7}}{7}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{6}}{3}$

分析 以A为坐标原点建立空间直角坐标系,求出 $\overrightarrow{PB}$,平面PCD的法向量,即可求PB与平面PCD所成角的正弦值;

解答 解:依题意,以A为坐标原点,分别以AB,AD,AP
为x,y,z轴建立空间直角坐标系O-xyz,AB=BC=2,AD=3,PA=2,则P(0,0,2),
B(2,0,0),C(2,2,0),D(0,3,0),
从而$\overrightarrow{PB}$=(2,0,-2),$\overrightarrow{PC}$=(2,2,-2),$\overrightarrow{PD}$=(0,3,-2),
设平面PCD的法向量为$\overrightarrow{n}$=(a,b,c),$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{PC}=0}\\{\overrightarrow{n}•\overrightarrow{PD}=0}\end{array}\right.$即$\left\{\begin{array}{l}{2a+2b-2c=0}\\{3b-2c=0}\end{array}\right.$,
不妨取c=3,则b=2,a=1,
所以平面PCD的一个法向量为$\overrightarrow{n}$=(1,2,3),(4分)
所以PB与平面PCD所成角的正弦值
sinθ=|cos<$\overrightarrow{PB}$,$\overrightarrow{n}$>|=|$\frac{2-6}{\sqrt{{2}^{2}+({-2)}^{2}}•\sqrt{{1}^{2}+{2}^{2}+{3}^{2}}}$|=|$-\frac{\sqrt{7}}{7}$|=$\frac{\sqrt{7}}{7}$,
故选:B.

点评 本题考查了空间向量的应用,线面角的计算,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网