题目内容
16.一只蚂蚁在边长分别为6cm、8cm、10cm的三角形的边上爬行,该蚂蚁距离三角形的某个顶点的距离不超过1cm的概率为$\frac{1}{4}$.分析 本题考查的知识点是几何概型的意义,关键是要找出蚂蚁距离三角形的三个顶点的距离不超过1时对应线段的长度,并将它同三角形的周长代入几何概型的计算公式,进行求解.
解答
解:如下图所示,当蚂蚁位于图中蓝色线段上时,距离三角形的三个顶点的距离不超过1,
由已知易得:蓝色线段的长度和为:6
三角形的周长为:6+8+10=24,
故P=$\frac{6}{24}$=$\frac{1}{4}$
故答案为:$\frac{1}{4}$
点评 几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.解决的步骤均为:求出满足条件A的基本事件对应的“几何度量”N(A),再求出总的基本事件对应的“几何度量”N,最后根据P=$\frac{N(A)}{N}$求解.
练习册系列答案
相关题目
11.在四棱锥P-ABCD中,平面PAD⊥平面ABCD,△PAD为正三角形,底面ABCD为边长为2的正方形,点E为棱PB的中点,则点P到平面ACE的距离为( )
| A. | $\frac{\sqrt{7}}{7}$ | B. | $\frac{\sqrt{21}}{7}$ | C. | $\frac{\sqrt{35}}{7}$ | D. | $\frac{2\sqrt{21}}{7}$ |
1.为了宣传2015年10月在贵阳举行的“世界众筹大会”,“世界众筹大会”筹委会举办了“大众创业、万众创新”知识有奖问答活动,随机对市民15~65岁的人群抽样n人,回答问题统计结果如图所示:
(1)分别求出a,x的值;
(2)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,“世界众筹大会”筹委会决定给所抽取的6人颁发幸运奖,各组抽取的人数分别是多少?
(3)请根据频率分布直方图,估计样本数据的众数和中位数.
| 组号 | 分组 | 回答正确的人数 | 回答正确的人数占本组的频率 | 频率分布直方图 |
| 第1组 | [15,25) | 5 | 0.5 | |
| 第2组 | [25,35) | a | 0.9 | |
| 第3组 | [35,45) | 27 | x | |
| 第4组 | [45,55) | 9 | 0.36 | |
| 第5组 | [55,65] | 3 | 0.2 |
(2)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,“世界众筹大会”筹委会决定给所抽取的6人颁发幸运奖,各组抽取的人数分别是多少?
(3)请根据频率分布直方图,估计样本数据的众数和中位数.
5.若点A(2,-4),点B(-2,-5),则向量$\overrightarrow{AB}$的坐标为( )
| A. | (-4,-1) | B. | (4,1) | C. | (0,-9) | D. | (-2,-5) |
8.已知$\overrightarrow{AB}+\overrightarrow{AD}=\overrightarrow{AC}$,且$\overrightarrow{AC}=\overrightarrow a$,$\overrightarrow{BD}=\overrightarrow b$,则$\overrightarrow{AB}$=( )
| A. | $\frac{1}{2}(\overrightarrow a-\overrightarrow b)$ | B. | $\frac{1}{2}(\overrightarrow a+\overrightarrow b)$ | C. | $\frac{1}{2}(\overrightarrow b-\overrightarrow a)$ | D. | $\frac{1}{2}\overrightarrow a-\overrightarrow b$ |