题目内容

已知α∈(
π
2
,π)
,且sin
α
2
+cos
α
2
=
2
3
3

(1)求sinα,cosα的值;
(2)若sin(α+β)=-
3
5
,β∈(0,
π
2
)
,求sinβ的值.
分析:(1)已知等式两边平方,利用完全平方公式及同角三角函数间的基本关系化简,再利用二倍角的正弦函数公式化简求出sinα,由α的范围,利用同角三角函数间的基本关系即可求出cosα的值;
(2)由α与β的范围,求出α+β的范围,利用同角三角函数间的基本关系求出cos(α+β)的值,将sinβ变形为sin[(α+β)-α],利用两角和与差的正弦函数公式化简,把各自的值代入计算即可求出值.
解答:解:(1)将sin
α
2
+cos
α
2
=
2
3
3
两边平方得:(sin
α
2
+cos
α
2
2=sin2
α
2
+2sin
α
2
cos
α
2
+cos2
α
2
=1+sinα=
4
3

∴sinα=
1
3

∵α∈(
π
2
,π),
∴cosα=-
1-sin2α
=-
2
2
3

(2)∵α∈(
π
2
,π),β∈(0,
π
2
),
∴α+β∈(
π
2
2
),
∵sin(α+β)=-
3
5
<0,
∴α+β∈(π,
2
),
∴cos(α+β)=-
1-sin2(α+β)
=-
4
5

则sinβ=sin[(α+β)-α]=sin(α+β)cosα-cos(α+β)sinα=-
3
5
×(-
2
2
3
)-(-
4
5
)×
1
3
=
2
2
5
+
4
15
=
6
2
+4
15
点评:此题考查了两角和与差的正弦函数公式,以及运用诱导公式化简求值,熟练掌握公式是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网