题目内容

3.已知A,B,P是双曲线mx2-ny2=1(m>0,n>0)上不同的三点,且A,B连线经过坐标原点,若直线PA,PB的斜率积为$\frac{2}{3}$,则该双曲线的离心率为(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{15}}}{3}$C.$\sqrt{2}$D.$\frac{{\sqrt{6}}}{2}$

分析 设出点的坐标,求出斜率,将点的坐标代入方程,两式相减,再结合${k_{PA}}•{k_{PB}}=\frac{2}{3}$,即可求得结论.

解答 解:由mx2-ny2=1得$\frac{{x}^{2}}{\frac{1}{m}}$-$\frac{{y}^{2}}{\frac{1}{n}}$=1,
则a2=$\frac{1}{m}$,b2=$\frac{1}{n}$,则$\frac{{b}^{2}}{{a}^{2}}$=$\frac{m}{n}$
由题意,设A(x1,y1),P(x2,y2),则B(-x1,-y1
∴kPA•kPB=$\frac{{{y}_{2}}^{2}-{{y}_{1}}^{2}}{{{x}_{2}}^{2}-{{x}_{1}}^{2}}$,
A,B代入两式相减可得$\frac{{{y}_{2}}^{2}-{{y}_{1}}^{2}}{{{x}_{2}}^{2}-{{x}_{1}}^{2}}$=$\frac{m}{n}$,
∵${k_{PA}}•{k_{PB}}=\frac{2}{3}$,∴$\frac{m}{n}$=$\frac{2}{3}$,
∴e2=1+$\frac{{b}^{2}}{{a}^{2}}$=1+$\frac{2}{3}$=$\frac{5}{3}$,
∴e=$\frac{\sqrt{15}}{3}$.
故选:B.

点评 本题考查双曲线的标准方程,以及双曲线的简单性质的应用,利用点差法,转化为斜率之间的关系是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网