题目内容
对四组数据进行统计,获得以下散点图,关于其相关系数的比较,正确的是( )
![]()
A.r2<r4<0<r3<r1 B.r4<r2<0<r1<r3
C.r4<r2<0<r3<r1 D.r2<r4<0<r1<r3
A
[解析] 由相关系数的定义以及散点图所表达的含义,可知r2<r4<0<r3<r1,故选A.
在2012年8月15日那天,某市物价部门对本市的5家商场的某商品的一天销售量及其价格进行调查,5家商场的售价x元和销售量y件之间的一组数据如下表所示:
| 价格x | 9 | 9.5 | m | 10.5 | 11 |
| 销售量y | 11 | n | 8 | 6 | 5 |
由散点图可知,销售量y与价格x之间有较强的线性相关关系,其线性回归直线方程是:
=-3.2x+40,且m+n=20,则其中的n=________.
甲、乙两台机床生产同一型号零件.记生产的零件的尺寸为t(cm),相关行业质检部门规定:若t∈(2.9,3.1],则该零件为优等品;若t∈(2.8,2.9]∪(3.1,3.2],则该零件为中等品;其余零件为次品.现分别从甲、乙机床生产的零件中各随机抽取50件,经质量检测得到下表数据:
| 尺寸 | [2.7, 2.8] | (2.8, 2.9] | (2.9, 3.0] | (3.0, 3.1] | (3.1, 3.2] | (3.2, 3.3] |
| 甲机床零件频数 | 2 | 3 | 20 | 20 | 4 | 1 |
| 乙机床零件频数 | 3 | 5 | 17 | 13 | 8 | 4 |
(1)设生产每件产品的利润为:优等品3元,中等品1元,次品亏本1元.若将频率视为概率,试根据样本估计总体的思想,估算甲机床生产一件零件的利润的数学期望;
(2)对于这两台机床生产的零件,在排除其他因素影响的情况下,试根据样本估计总体的思想,估计约有多大的把握认为“零件优等与否和所用机床有关”,并说明理由.
参考公式:K2=
.
参考数据:
| P(K2≥k0) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
| k0 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |