题目内容
17.已知$\overrightarrow{a}$⊥$\overrightarrow{b}$,|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,且$\overrightarrow{a}$+2$\overrightarrow{b}$与λ$\overrightarrow{a}$-$\overrightarrow{b}$垂直,则实数λ的值为8.分析 利用两个向量垂直的性质,求得$\overrightarrow{a}•\overrightarrow{b}$=0,再根据($\overrightarrow{a}$+2$\overrightarrow{b}$)•(λ$\overrightarrow{a}$-$\overrightarrow{b}$)=0,求得实数λ的值.
解答 解:∵已知$\overrightarrow{a}$⊥$\overrightarrow{b}$,|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,∴$\overrightarrow{a}•\overrightarrow{b}$=0,
再根据 $\overrightarrow{a}$+2$\overrightarrow{b}$与λ$\overrightarrow{a}$-$\overrightarrow{b}$垂直,
∴($\overrightarrow{a}$+2$\overrightarrow{b}$)•(λ$\overrightarrow{a}$-$\overrightarrow{b}$)=λ${\overrightarrow{a}}^{2}$+(2λ-1)$\overrightarrow{a}•\overrightarrow{b}$-2${\overrightarrow{b}}^{2}$=λ+0-8=0,
∴λ=8,
故答案为:8.
点评 本题主要考查两个向量垂直的性质,两个向量的数量积的运算,属于基础题.
练习册系列答案
相关题目
8.直线y=kx+3被圆(x-2)2+(y-3)2=4截得的弦长为$2\sqrt{3}$,则直线的斜率为( )
| A. | $\sqrt{3}$ | B. | $±\sqrt{3}$ | C. | $\frac{{\sqrt{3}}}{3}$ | D. | $±\frac{{\sqrt{3}}}{3}$ |
5.已知函数f(x)=$\left\{\begin{array}{l}{|lo{g}_{2}x|,0<x<2}\\{\frac{1}{3}{x}^{2}-\frac{8}{3}x+5,x≥2}\end{array}\right.$,若函数y=f(x)-m(m∈R)有四个零点x1,x2,x3,x4,则x1x2x3x4的取值范围是( )
| A. | (7,12) | B. | (12,15) | C. | (12,16) | D. | (15,16) |
12.
如图所示,正方体 ABCD-A1B1C1D1中,M.N分别为棱 C1D1,C1C的中点,有以下四个结论:①直线AM与C1C是相交直线;
②直线AM与BN是平行直线;
③直线BN与MB1是异面直线;
④直线MN与AC所成的角为60°.
则其中真命题的是( )
②直线AM与BN是平行直线;
③直线BN与MB1是异面直线;
④直线MN与AC所成的角为60°.
则其中真命题的是( )
| A. | ①② | B. | ③④ | C. | ①④ | D. | ②③ |
2.下列函数在(0,+∞)上是增函数的是( )?
| A. | y=ln(x-2) | B. | y=-$\sqrt{x}$ | C. | y=x2 | D. | y=$\frac{1}{x}$ |