题目内容
5.已知函数f(x)=$\left\{\begin{array}{l}{|lo{g}_{2}x|,0<x<2}\\{\frac{1}{3}{x}^{2}-\frac{8}{3}x+5,x≥2}\end{array}\right.$,若函数y=f(x)-m(m∈R)有四个零点x1,x2,x3,x4,则x1x2x3x4的取值范围是( )| A. | (7,12) | B. | (12,15) | C. | (12,16) | D. | (15,16) |
分析 作函数f(x)=$\left\{\begin{array}{l}{|lo{g}_{2}x|,0<x<2}\\{\frac{1}{3}{x}^{2}-\frac{8}{3}x+5,x≥2}\end{array}\right.$的图象,从而可得x1x2=1,且x3+x4=8,(2<x3<3),从而解得
解答 解:作函数f(x)=$\left\{\begin{array}{l}{|lo{g}_{2}x|,0<x<2}\\{\frac{1}{3}{x}^{2}-\frac{8}{3}x+5,x≥2}\end{array}\right.$的图象如下,
,
结合图象可知,-log2x1=log2x2,
故x1x2=1,
令$\frac{1}{3}{x}^{2}-\frac{8}{3}x+5$=0得,x=3,或x=5,
故x3+x4=8,(2<x3<3),
故x1x2x3x4=x3x4
=x3(8-x3)
=-(x3-4)2+16,
∵2<x3<3,
∴-2<x3-4<-1,
∴12<-(x3-4)2+16<15,
故选:B
点评 本题考查了数形结合的思想应用及学生的作图能力,同时考查了配方法的应用.
练习册系列答案
相关题目
15.在正项等差数列{an}中,a12=2a5-a9,且a5+a6+a7=18,则( )
| A. | a1,a2,a3成等比数列 | B. | a2,a3,a6成等比数列 | ||
| C. | a3,a4,a8成等比数列 | D. | a4,a6,a9成等比数列 |
13.已知P是△ABC所在平面内一点,$\overrightarrow{PA}+\overrightarrow{PB}+\overrightarrow{PC}=\overrightarrow 0$,现将一粒红豆随机撒在△ABC内,则红豆落在△PBC内的概率是( )
| A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{2}{3}$ |
5.已知P是半径为2的球面上一点,过P点作两两垂直的三条线段PA,PB,PC,A,B,C三点均在球面上,满足PA=2PB,则P点到平面ABC的最远距离是( )
| A. | $\frac{4\sqrt{6}}{9}$ | B. | $\frac{4}{3}$ | C. | $\frac{8}{7}$ | D. | $\frac{6}{5}$ |
6.设数列{an}满足a1=1,a2=4,a3=9,an=an-1+an-2-an-3,n=4,5,…,则a2017=( )
| A. | 8064 | B. | 8065 | C. | 8067 | D. | 8068 |