题目内容
已知中心在原点、焦点在x轴上的椭圆C1与双曲线C2有共同的焦点,设左右焦点分别为F1,F2,P是C1与C2在第一象限的交点,
PF1F2是以PF1为底边的等腰三角形,若椭圆与双曲线的离心率分别为e1,e2,则e1·e2的取值范围是( )
| A.( | B.( | C.( | D.(0,+ |
C
解析试题分析:
解:椭圆的长半轴长为
,双曲线的实半轴长为
,焦距为![]()
![]()
根据题意:
,![]()
因为在等腰三角形
中,
,所以,![]()
所以,
,![]()
所以,![]()
故选C.
考点:1、椭圆定义与简单几何性质;2、双曲线的定义与简单几何性质.
练习册系列答案
相关题目
如果椭圆
上一点
到焦点
的距离为6,则点
到另一个焦点
的距离为( )
| A.10 | B.6 | C.12 | D.14 |
已知
为坐标原点,
为抛物线
的焦点,
为
上一点,若
,则△
的面积为( )
| A.2 | B. | C. | D.4 |
与椭圆
有公共焦点,且离心率
的双曲线方程是( )
| A. | B. | C. | D. |
已知
,则双曲线
的离心率为( )
| A. | B.2 | C. | D. |
若m是2和8的等比中项,则圆锥曲线
的离心率是( )
| A. | B. |
| C. | D. |
椭圆
中,以点
为中点的弦所在直线斜率为( )
| A. |
| B. |
| C. |
| D. |