题目内容
| A、1个 | B、4个 | C、8个 | D、12个 |
考点:异面直线及其所成的角
专题:空间角
分析:利用线面角的定义、平行平面的性质即可得出.
解答:
解:在过正方体AC1的8个顶点中的3个顶点的平面中,能与三条棱CD、A1D1、BB1所成的角均相等的平面有:平面AB1D1,平面BC1D,平面AB1C,平面A1C1D,
平面ACD1,平面A1BC1,平面B1CD1,平面A1BD.共8个平面.
故选:C.
平面ACD1,平面A1BC1,平面B1CD1,平面A1BD.共8个平面.
故选:C.
点评:本题考查了线面角的定义、平行平面的性质,属于基础题.
练习册系列答案
相关题目
已知双曲线
-
=1(a>0,b>0)的右焦点与抛物线y2=12x的焦点重合,且双曲线的一条渐近线被圆(x-3)2+y2=8截得的弦长为4,则此双曲线的渐近线方程为( )
| x2 |
| a2 |
| y2 |
| b2 |
| A、y=±2x | ||||
B、y=±
| ||||
C、y=±
| ||||
D、y=±2
|
一批产品分为一、二、三级,其中一级品是二级品的2倍,三级品为二级品的一半,从这批产品中随机抽取一个检验,其级别为随机变量ξ,则Eξ的值为( )
A、
| ||
B、
| ||
C、
| ||
| D、2 |
已知数列{an}是等差数列,a1+a3+a5=105,a2+a4+a6=99,{an}的前n项和为Sn,则使得Sn达到最大的n是( )
| A、18 | B、19 | C、20 | D、21 |
设∠A,∠B,∠C是△ABC的三个内角,且tanA、
、tanB成等差数列,tanA、
、tanB成等比数列,则△ABC是( )
| 5 |
| 12 |
| ||
| 6 |
| A、锐角三角形 |
| B、等边三角形 |
| C、钝角三角形 |
| D、等腰直角三角形 |