题目内容
3.设f(α)=$\frac{2sin(π+α)cos(π-α)-cos(π+α)}{1+si{n}^{2}α+sin(π-α)-co{s}^{2}(π-α)}$.(1)若α=-$\frac{17}{6}$π,求f(α)的值;
(2)若α是锐角,且sin(α-$\frac{3}{2}$π)=$\frac{3}{5}$,求f(α)的值.
分析 由条件利用诱导公式、同角三角函数的基本关系,化简所给的三角函数式,可得结果.
解答 解:(1)∵f(α)=$\frac{2sin(π+α)cos(π-α)-cos(π+α)}{1+si{n}^{2}α+sin(π-α)-co{s}^{2}(π-α)}$=$\frac{2•(-sinα)•(-cosα)+cosα}{1{+sin}^{2}α+sinα{-cos}^{2}α}$=$\frac{cosα(2sinα+1)}{sinα(2sinα+1)}$=cotα,
若α=-$\frac{17}{6}$π,则f(α)=cot(-$\frac{17π}{6}$)=cot$\frac{π}{6}$=$\sqrt{3}$.
(2)若α是锐角,且sin(α-$\frac{3}{2}$π)=-sin($\frac{3π}{2}$-α)=cosα=$\frac{3}{5}$,∴sinα=$\sqrt{{1-cos}^{2}α}$=$\frac{4}{5}$,
∴f(α)=cotα=$\frac{cosα}{sinα}$=$\frac{3}{4}$.
点评 本题主要考查应用诱导公式、同角三角函数的基本关系,化简三角函数式,属于基础题.
练习册系列答案
相关题目
8.已知tanα=-3,α∈(-π,0),则$\sqrt{10}$cosα-tan2α=( )
| A. | $\frac{3}{4}$ | B. | -$\frac{3}{4}$ | C. | $\frac{1}{4}$ | D. | -$\frac{1}{4}$ |
5.已知动点P(x,y)在过点(-$\frac{3}{2}$,-2)且与圆M:(x-1)2+(y+2)2=5相切的两条直线和x-y+1=0所围成的区域内,则z=|x+2y-3|的最小值为( )
| A. | $\frac{\sqrt{5}}{5}$ | B. | 1 | C. | $\sqrt{5}$ | D. | 5 |
3.复数$\frac{1}{(1+i)i}$在复平面上对应的点位于( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |