题目内容

15.公差不为0的等差数列{an}的部分项${a}_{{k}_{1}}$,${a}_{{k}_{2}}$,${a}_{{k}_{3}}$,…构成等比数列{${a}_{{k}_{n}}$},且k1=1,k2=2,k3=6,则k5为(  )
A.86B.88C.90D.92

分析 由题意可得:${a}_{2}^{2}={a}_{1}{a}_{6}$,即$({a}_{1}+d)^{2}$=a1(a1+5d),解得d=3a1.再利用等差数列与等比数列的通项公式即可得出.

解答 解:∵公差不为0的等差数列{an}的部分项${a}_{{k}_{1}}$,${a}_{{k}_{2}}$,${a}_{{k}_{3}}$,…构成等比数列{${a}_{{k}_{n}}$},且k1=1,k2=2,k3=6,
∴${a}_{2}^{2}={a}_{1}{a}_{6}$,即$({a}_{1}+d)^{2}$=a1(a1+5d),∴d=3a1
∴等比数列{${a}_{{k}_{n}}$}为a1,4a1,16a1,64a1,256a1
∴256a1=a1+(k5-1)×3a1
则k5=86.
故选:A.

点评 本题考查了等差数列与等比数列的通项公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网