题目内容

15.已知过抛物线x2=4y焦点F的直线交抛物线于A、B两点(点A在第一象限),若$\overrightarrow{AF}=3\overrightarrow{FB}$,则直线的方程为(  )
A.$\sqrt{3}x-y-\sqrt{3}=0$B.$x-\sqrt{3}y+\sqrt{3}=0$C.$x-\sqrt{3}y-1=0$D.$\sqrt{3}x-y+1=0$

分析 根据直线方程可知直线恒过定点F(0,1),过A、B分别作BQ⊥l于Q,AP⊥l于P,BC⊥AP,垂足为C,由|AF|=3|FB|,则|AP|=3|BQ|,进而求得直线的斜率.

解答 解:设抛物线C:x2=4y的准线为l:y=-1,焦点F(0,1)
设直线AB:y=kx+1(k>0)
过A、B分别作AP⊥l于P,BQ⊥l于Q,BC⊥AP,垂足为C,
由|AF|=3|FB|=3m,则|AP|=3|BQ|=3m,∴|AC|=2m,|AB|=4m,|BC|=2$\sqrt{3}$m
∴k=$\frac{\sqrt{3}}{3}$,
则直线AB的方程:y=$\frac{\sqrt{3}}{3}$x+1,整理得:x-$\sqrt{3}$y+$\sqrt{3}$=0,
故选:B.

点评 本题主要考查了抛物线的简单性质,考查了对抛物线的基础知识的灵活运用,考查了数形结合的思想,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网