ÌâÄ¿ÄÚÈÝ
7£®ÒÑ֪ʵÊýx£¬yÂú×ãÔ¼ÊøÌõ¼þ$\left\{\begin{array}{l}x¡Ý1\\ y¡Ýx-1\\ x+y¡Ü4\end{array}\right.$£¬Ä¿±êº¯Êýz=x+y£¬Ôòµ±z=3ʱ£¬x2+y2µÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©| A£® | $[\frac{{3\sqrt{2}}}{2}£¬\sqrt{5}]$ | B£® | $[\frac{{3\sqrt{2}}}{2}£¬5]$ | C£® | $[\frac{9}{2}£¬5]$ | D£® | $[\sqrt{5}£¬\frac{9}{2}]$ |
·ÖÎö ×÷³ö²»µÈʽ×é¶ÔÓ¦µÄÆ½ÃæÇøÓò£¬ÀûÓÃÄ¿±êº¯ÊýµÄ¼¸ºÎÒâÒ壬¼´¿ÉµÃµ½½áÂÛ
½â´ð
½â£º×÷³ö²»µÈʽ¶ÔÓ¦µÄÆ½ÃæÇøÓò£¬
µ±Ä¿±êº¯Êýz=x+y£¬Ôòµ±z=3ʱ£¬¼´x+y=3ʱ£¬×÷³ö´ËʱµÄÖ±Ïߣ¬
Ôòx2+y2µÄ¼¸ºÎÒâÒåΪ¶¯µãP£¨x£¬y£©µ½ÔµãµÄ¾àÀëµÄƽ·½£¬
µ±Ö±Ïßx+y=3ÓëÔ²x2+y2=r2ÏàÇÐʱ£¬¾àÀë×îС£¬
¼´Ôµãµ½Ö±Ïßx+y=3µÄ¾àÀëd=$\frac{3}{\sqrt{2}}$£¬¼´×îСֵΪd2=$\frac{9}{2}$£¬
µ±Ö±Ïßx+y=3ÓëÔ²x2+y2=r2ÏཻÓëµãB»òCʱ£¬¾àÀë×î´ó£¬
ÓÉ$\left\{\begin{array}{l}{x=1}\\{x+y=3}\end{array}\right.$£¬½âµÃx=1£¬y=2£¬¼´B£¨1£¬2£©£¬Í¬Àí½âµÃC£¨2£¬1£©
´Ëʱr2=x2+y2=22+12=5£¬
¹ÊÑ¡£ºC£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÏßÐԹ滮µÄÓ¦Óã¬ÀûÓÃÄ¿±êº¯ÊýµÄ¼¸ºÎÒâÒ壬½áºÏÊýÐνáºÏµÄÊýѧ˼ÏëÊǽâ¾ö´ËÀàÎÊÌâµÄ»ù±¾·½·¨£®ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
2£®ÔÚÖ±½Ç¡÷ABCÖУ¬¡ÏBCA=90¡ã£¬CA=CB=1£¬PΪAB±ßÉϵĵã$\overrightarrow{AP}$=¦Ë$\overrightarrow{AB}$£¬Èô$\overrightarrow{CP}$•$\overrightarrow{AB}$¡Ý$\overrightarrow{PA}$•$\overrightarrow{PB}$£¬Ôò¦ËµÄ×î´óÖµÊÇ£¨¡¡¡¡£©
| A£® | $\frac{{2+\sqrt{2}}}{2}$ | B£® | $\frac{{2-\sqrt{2}}}{2}$ | C£® | 1 | D£® | $\sqrt{2}$ |
12£®Ë«ÇúÏß$\frac{{x}^{2}}{m}-\frac{{y}^{2}}{4}$=1µÄ½¹¾àΪ6£¬ÔòmµÄÖµÊÇ£¨¡¡¡¡£©
| A£® | 6»ò2 | B£® | 5 | C£® | 1»ò9 | D£® | 3»ò5 |