题目内容

6.已知函数f(x)在定义域R上的导函数为f'(x),若方程f'(x)=0无解,且f[f(x)-2017x]=2018,若函数g(x)=ax+$\frac{1}{2}{x^2}$+4lnx在定义域上与f(x)单调性相同,则实数a的取值范围是(  )
A.(-4,+∞)B.[-4,+∞)C.(-5,+∞)D.[-5,+∞)

分析 由题意可知:f(x)为R上的单调函数,则f(x)-2017x为定值,由指数函数的性质可知f(x)为R上的增函数,得到g(x)在(0,+∞)递增,结合二次函数的性质求出a的范围即可.

解答 解:若方程f'(x)=0无解,
则 f′(x)>0或f′(x)<0恒成立,所以f(x)为R上的单调函数,
?x∈R都有f[f(x)-2017x]=2018,
则f(x)-2017x为定值,
设t=f(x)-2017x,则f(x)=t+2017x,易知f(x)为R上的增函数,
则若函数g(x)在定义域上与f(x)单调性相同,
则g(x)=ax+$\frac{1}{2}{x^2}$+4lnx在(0,+∞)递增,
即g′(x)=a+x+$\frac{4}{x}$=$\frac{{x}^{2}+ax+4}{x}$≥0在(0,+∞)恒成立,
即a≥-x-$\frac{4}{x}$在(0,+∞)恒成立,
而y=-x-$\frac{4}{x}$≤-4,
故a≥-4,
故选:B.

点评 本题考查导数的综合应用,考查利用导数求函数的单调性,考查计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网