题目内容
已知f(x)=x2-5x+c,f1(x)=f(x),fn(x)=f[fn-1(x)],(n≥2,n∈N*),若函数y=fn(x)-x不存在零点,则c的范围是( )
| A、(-∞,4) | ||
B、[
| ||
| C、(9,+∞) | ||
| D、(-∞,9] |
考点:函数零点的判定定理,二次函数的性质
专题:计算题,函数的性质及应用
分析:求n=1时c的范围,用排除法可得.
解答:
解:当n=1时,y=f1(x)-x=x2-6x+c,
若不存在零点,则36-4c<0,
解得,c>9.
故排除A、B、D;
故选C.
若不存在零点,则36-4c<0,
解得,c>9.
故排除A、B、D;
故选C.
点评:本题考查了二次函数的性质,属于基础题.
练习册系列答案
相关题目
已知集合A={x|x>0},集合B={x|1≤x<2},则∁AB=( )
| A、(-1,1)∪[2,+∞) |
| B、(0,1)∪[2,+∞) |
| C、(-1,1)∪(2,+∞) |
| D、(0,1)∪(2,+∞) |
不等式
>1的解集是( )
| x-1 |
| x+2 |
| A、{x|x<-2} |
| B、{x|-2<x<1} |
| C、{x|x<1} |
| D、{x|x∈R} |
已知条件p:x≤1,条件q:
<1,则p是q的( )
| 1 |
| x |
| A、充分不必要条件 |
| B、必要不充分条件 |
| C、充分必要条件 |
| D、既不充分也不必要条件 |
要得到y=
cos2x+sinxcosx的图象,只需把y=sin2x的图象上所有点( )
| 3 |
A、向左平移
| ||||||
B、向左平移
| ||||||
C、向右平移
| ||||||
D、向右平移
|
已知函数f(x)=sin(ωx-
)(ω>0)的最小正周期为π,为了得到函数g(x)=cosωx的图象,只要将y=f(x)的图象( )
| π |
| 3 |
A、向左平移
| ||
B、向右平移
| ||
C、向左平移
| ||
D、向右平移
|
函数f(x)=|x|-k有两个零点,则( )
| A、k<0 | B、k=0 |
| C、k>0 | D、0≤k<1 |
函数y=log0.5(x2-x-6)的单调递增的区间为( )
A、(-∞,
| ||
| B、(3,+∞) | ||
C、(
| ||
| D、(-∞,-2) |
命题“?x0∈R,2x0≤0”的否定是( )
| A、?x0∈R,2x0>0 |
| B、?x0∉R,2x0≤0 |
| C、?x∈R,2x>0 |
| D、?x∈R,2x≤0 |