ÌâÄ¿ÄÚÈÝ
ÒÑÖªº¯Êý
£½
£«
ÓÐÈçÏÂÐÔÖÊ£ºÈç¹û³£Êý
£¾0£¬ÄÇô¸Ãº¯ÊýÔÚ
0£¬![]()
ÉÏÊǼõº¯Êý£¬ÔÚ![]()
£¬£«¡Þ
ÉÏÊÇÔöº¯Êý£®
£¨1£©Èç¹ûº¯Êý
£½
£«
£¨
£¾0£©µÄÖµÓòΪ
6£¬£«¡Þ
£¬Çó
掙术
£¨2£©Ñо¿º¯Êý
£½
£«
£¨³£Êý
£¾0£©ÔÚ¶¨ÒåÓòÄڵĵ¥µ÷ÐÔ£¬²¢ËµÃ÷ÀíÓÉ£»
£¨3£©¶Ôº¯Êý
£½
£«
ºÍ
£½
£«
£¨³£Êý
£¾0£©×÷³öÍÆ¹ã£¬Ê¹ËüÃǶ¼ÊÇÄãËùÍÆ¹ãµÄº¯ÊýµÄÌØÀý£®Ñо¿ÍƹãºóµÄº¯ÊýµÄµ¥µ÷ÐÔ£¨Ö»Ðëд³ö½áÂÛ£¬²»±ØÖ¤Ã÷£©¡£
½â£º£¨1£©º¯Êýy=x+
(x>0)µÄ×îСֵÊÇ2
£¬Ôò2
=6, ¡àb=log29.
(2) Éè0<x1<x2,y2£y1=
.
µ±
<x1<x2ʱ, y2>y1, º¯Êýy=
ÔÚ[
,+¡Þ)ÉÏÊÇÔöº¯Êý£»µ±0<x1<x2<
ʱy2<y1, º¯Êýy=
ÔÚ(0,
]ÉÏÊǼõº¯Êý.ÓÖy=
ÊÇżº¯Êý£¬ÓÚÊÇ£¬¸Ãº¯ÊýÔÚ(£¡Þ,£
]ÉÏÊǼõº¯Êý, ÔÚ[£
,0)ÉÏÊÇÔöº¯Êý£»
(3) ¿ÉÒ԰Ѻ¯ÊýÍÆ¹ãΪy=
(³£Êýa>0),ÆäÖÐnÊÇÕýÕûÊý.
µ±nÊÇÆæÊýʱ,º¯Êýy=
ÔÚ(0,
]ÉÏÊǼõº¯Êý,ÔÚ[
,+¡Þ) ÉÏÊÇÔöº¯Êý,-
ÔÚ(£¡Þ,£
]ÉÏÊÇÔöº¯Êý, ÔÚ[£
,0)ÉÏÊǼõº¯Êý
µ±nÊÇżÊýʱ,º¯Êýy=
ÔÚ(0,
]ÉÏÊǼõº¯Êý,ÔÚ[
,+¡Þ) ÉÏÊÇÔöº¯Êý,
ÔÚ(£¡Þ,£
]ÉÏÊǼõº¯Êý, ÔÚ[£
,0)ÉÏÊÇÔöº¯Êý.·Ö