题目内容
【题目】对于给定数列
,若数列
满足:对任意
,都有
,则称数列
是数列
的“相伴数列”.
(1)若
,且数列
是数列
的“相伴数列”,试写出
的一个通项公式,并说明理由;
(2)设
,证明:不存在等差数列
,使得数列
是数列
的“相伴数列”;
(3)设
,
(其中
),若
是数列
的“相伴数列”,试分析实数b、q的取值应满足的条件.
【答案】详见解析
【解析】
(1)设
,代入
,运算得到小于0,利用“相伴数列”定义即可判断出;
(2)假设存在等差数列
是
的“相伴数列”,则有
分别讨论
与
时
与
的大小,根据
是等差数列推出矛盾 所以,不存在等差数列
,使得数列
是
的“相伴数列”.
(3)对b的大小进行分类讨论,写出
的前后连续两项,根据
得出b、q的取值满足的条件.
解:(1)
,
此时
,所以
是数列
的“相伴数列”.
注:答案不唯一,
只需是正负相间的数列.
(2)证明,假设存在等差数列
是
的“相伴数列”,则有
若
,则由
得
…①,
又由
得
又因为
是等差数列,所以
,得
,与①矛盾
同理,当
,则由
得
…②,
又由
得
,
又因为
是等差数列,所以
,得
,与②矛盾,
所以,不存在等差数列
,使得数列
是
的“相伴数列”.
(3)由于
,易知
且
,
①当
时,
,由于对任意
,都有
,
故只需
,
由于
,所以当n=2k,k时,
,
故只需当n=2k+1,k
时,
=
,
即
<b对k
恒成立,得
;
②当0<b<1时,
,
,
与
矛盾,不符合题意;
③当b<-1时,
,
当n=2k+1,k
时,
,
故只需当n=2k,k
时,
,
即
>b对k
恒成立,得
;
④当-1
时,
,
,
下证只需bq>2,若bq>2,则q<
,
当n=2k+1,k
时,
,
当n=2k,k
时,
,符合题意.
综上所述,实数
的取值应满足的条件为:
或
.
【题目】某小学为了解本校某年级女生的身高情况,从本校该年级的女学生中随机选出100名并统计她们的身高(单位:cm),得到的频数分布表如下:
分组 |
|
|
|
|
频数 | 20 | 20 | 50 | 10 |
(1)用分层抽样的方法从身高在
和
的女生中共抽取6人,则身高在
内的女生应抽取几人?
(2)在(1)中抽取的6人中,再随机抽取2人,求这2人身高都在
内的概率.