题目内容
圆心在曲线y=-(x>0)上,且与直线3x-4y+3=0相切的面积最小的圆的方程是________.
(x-2)2+(y+)2=9
下列四个正方体图形中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得出AB∥平面MNP的图形的序号是( )
(A)①③ (B)②③ (C)①④ (D)②④
在一直角坐标系中已知A(-1,6),B(3,-8),现沿x轴将坐标平面折成60°的二面角,则折叠后A、B两点间的距离为 .
如图,四棱锥PABCD中,ABCD为矩形,平面PAD⊥平面ABCD.
(1)求证:AB⊥PD;
(2)若∠BPC=90°,PB=,PC=2,问AB为何值时,四棱锥PABCD的体积最大?并求此时平面BPC与平面DPC夹角的余弦值.
若圆x2+y2+2x-4y+m=0(m<3)的一条弦AB的中点为P(0,1),则垂直于AB的直径所在直线的方程为( )
A.x-y+1=0 B.x+y-1=0
C.x-y-1=0 D.x+y+1=0
由直线与圆相切时,圆心到切点的连线与直线垂直,想到平面与球相切时,球心与切点的连线与平面垂直,用的是( )
A.归纳推理 B.演绎推理
C.类比推理 D.特殊推理
若点P是正四面体A BCD的面BCD上一点,且P到另外三个面的距离分别为h1,h2,h3,正四面体A BCD的高为h,则( )
A.h>h1+h2+h3
B.h=h1+h2+h3
C.h<h1+h2+h3
D.h1,h2,h3与h的关系不定
已知a,b,c>0,求证:a3+b3+c3≥(a2+b2+c2)·(a+b+c).
如图K40?8所示,某几何体的主视图和俯视图都是矩形,左视图是平行四边形,则该几何体的表面积为( )
A.15+3 B.9
C.30+6 D.18
图K40?8