题目内容
8.已知圆心(2,-3),一条直径的两个端点恰好在两坐标轴上,求这个圆的方程.分析 根据题意求出圆的半径r,即可写出圆的方程.
解答 解:设直径的两个端点分别A(a,0)、B(0,b),
圆心C为点(2,-3),
由中点坐标公式得,$\frac{a}{2}$=2,$\frac{b}{2}$=-3;
解得a=4,b=-6,
所以半径r=$\frac{1}{2}$AB=$\frac{1}{2}$$\sqrt{{4}^{2}{+(-6)}^{2}}$=$\sqrt{13}$,
所以圆的方程是:(x-2)2+(y+3)2=13.
点评 本题考查了圆的方程的应用问题,是基础题目.
练习册系列答案
相关题目
3.已知某几何体的三视图如图所示,则这个几何体的体积为( )

| A. | 12π | B. | 45π | C. | 57π | D. | 24π |
20.已知cos(α+$\frac{π}{4}}$)=$\frac{3}{5}$,$\frac{π}{2}$≤α<$\frac{3π}{2}$,则sin2α=( )
| A. | $-\frac{4}{5}$ | B. | $\frac{4}{5}$ | C. | $-\frac{7}{25}$ | D. | $\frac{7}{25}$ |
17.探究函数f(x)=2x+$\frac{8}{x}$,x∈(0,+∞)最小值,并确定取得最小值时x的值.列表如下:
请观察表中y值随x值变化的特点,完成以下的问题.
(1)函数f(x)=2x+$\frac{8}{x}$(x>0)在区间(0,2)上递减;函数f(x)=2x+$\frac{8}{x}$(x>0)在区间(2,+∞)上递增.当x=2时,y最小=8.
(2)证明:函数f(x)=2x+$\frac{8}{x}$(x>0)在区间(0,2)递减.
(3)思考:函数f(x)=2x+$\frac{8}{x}$(x<0)时,有最值吗?是最大值还是最小值?此时x为何值?(直接回答结果,不需证明)
| x | … | 0.5 | 1 | 1.5 | 1.7 | 1.9 | 2 | 2.1 | 2.2 | 2.3 | 3 | 4 | 5 | 7 | … |
| y | … | 17 | 10 | 8.34 | 8.1 | 8.01 | 8 | 8.01 | 8.04 | 8.08 | 8.6 | 10 | 11.6 | 15.14 | … |
(1)函数f(x)=2x+$\frac{8}{x}$(x>0)在区间(0,2)上递减;函数f(x)=2x+$\frac{8}{x}$(x>0)在区间(2,+∞)上递增.当x=2时,y最小=8.
(2)证明:函数f(x)=2x+$\frac{8}{x}$(x>0)在区间(0,2)递减.
(3)思考:函数f(x)=2x+$\frac{8}{x}$(x<0)时,有最值吗?是最大值还是最小值?此时x为何值?(直接回答结果,不需证明)