题目内容
3.已知递增的等比数列{bn}(n∈N+)满足b2+b3=80,b1•b4=1024,an=log4bn+1.(1)求数列{an}的通项公式;
(2)若cn=$\frac{1}{{a}_{n}•{a}_{n+1}}$,求数列{cn}的前n项和Sn.
分析 (1)利用等比数列的通项公式即可得出.
(2)cn=$\frac{1}{{a}_{n}•{a}_{n+1}}$=$\frac{1}{(n+1)(n+2)}$=$\frac{1}{n+1}-\frac{1}{n+2}$,利用“裂项求和”即可得出.
解答 解:(1)设等比数列{bn}的公比为q>1,∵b2+b3=80,b1•b4=1024,
∴$\left\{\begin{array}{l}{{b}_{1}(q+{q}^{2})=80}\\{{b}_{1}^{2}{q}^{3}=1024}\end{array}\right.$,解得$\left\{\begin{array}{l}{{b}_{1}=4}\\{q=4}\end{array}\right.$,
∴bn=4n.
an=log4bn+1=n+1.
(2)cn=$\frac{1}{{a}_{n}•{a}_{n+1}}$=$\frac{1}{(n+1)(n+2)}$=$\frac{1}{n+1}-\frac{1}{n+2}$,
∴数列{cn}的前n项和Sn=$(\frac{1}{2}-\frac{1}{3})$+$(\frac{1}{3}-\frac{1}{4})$+…+$(\frac{1}{n+1}-\frac{1}{n+2})$
=$\frac{1}{2}-\frac{1}{n+2}$
=$\frac{n}{2(n+2)}$.
点评 本题考查了等比数列的通项公式、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
14.已知函数$f(x)=\left\{\begin{array}{l}{x^3}\\ sinx\end{array}\right.$$\begin{array}{l}x≥0\\ x<0\end{array}$,则$f[f(-\frac{3π}{2})]$=( )
| A. | -sin1 | B. | sin1 | C. | -1 | D. | 1 |
11.复数$\frac{1}{{i}^{5}}$的虚部为( )
| A. | 1 | B. | -1 | C. | 0 | D. | -i |
13.已知数列{an}的前n项和Sn=27-33-n,则数列{anan+1an+2}的前3项和等于( )
| A. | 216 | B. | 224 | C. | $\frac{6056}{27}$ | D. | 26 |